Skip to main content
Log in

Statistical approach to evaluate effect of temperature and moisture content on the production of antioxidant naphtho-gamma-pyrones and hydroxycinnamic acids by Aspergillus tubingensis in solid-state fermentation

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Non-ochratoxigenic Aspergillus tubingensis G131 is a filamentous fungus that can produce naphtho-gamma-pyrones (NγPs), polyketide pigments that exhibit interesting antioxidant properties. This study aims to investigate the effect of two critical parameters, temperature and moisture content on the fungus grown in solid-state fermentation using agricultural by-products (vine shoots and wheat bran) as sole medium. From the kinetic productions of secondary metabolites NγPs (asperpyrone E, dianhydroaurasperone C, fonsecin, fonsecin B and ustilaginoidin A), alkaloids (nigragilin and aspernigrin A), degradation products from the solid medium (β-d-glucose, p-coumaric acid and trans-ethyl ferulate), ergosterol and conidia obtained for different temperatures and moisture contents, a principal component analysis (PCA) was carried out to highlight the production patterns of these compounds. This approach allowed us to determine that fonsecin, the compound of higher interest—exhibiting the most interesting antiradical potential—is particularly more produced at 25 °C and 66% of moisture content. This study underlines the importance of temperature and moisture content on naphtho-gamma-pyrones and hydroxycinnamic acid production using solid-state fermentation and contributes to the development of agroindustrial by-product valorization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the authors declare that all data and materials as well as software application or custom code support their published claims and comply with field standards.

References

  1. Soccol CR, da Costa ESF, Letti LAJ et al (2017) Recent developments and innovations in solid state fermentation. Biotechnol Res Innov. https://doi.org/10.1016/j.biori.2017.01.002

    Article  Google Scholar 

  2. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84. https://doi.org/10.1016/S1369-703X(02)00121-3

    Article  CAS  Google Scholar 

  3. Figueroa-Montero A, Esparza-Isunza T, Saucedo-Castañeda G et al (2011) Improvement of heat removal in solid-state fermentation tray bioreactors by forced air convection. J Chem Technol Biotechnol 86:1321–1331. https://doi.org/10.1002/jctb.2637

    Article  CAS  Google Scholar 

  4. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44:13–18. https://doi.org/10.1016/j.bej.2008.10.019

    Article  CAS  Google Scholar 

  5. Nielsen KF, Holm G, Uttrup LP, Nielsen PA (2004) Mould growth on building materials under low water activities. influence of humidity and temperature on fungal growth and secondary metabolism. Int Biodeterior Biodegrad 54:325–336. https://doi.org/10.1016/j.ibiod.2004.05.002

    Article  CAS  Google Scholar 

  6. Parra R, Magan N (2004) Modelling the effect of temperature and water activity on growth of Aspergillus niger strains and applications for food spoilage moulds. J Appl Microbiol 97:429–438. https://doi.org/10.1111/j.1365-2672.2004.02320.x

    Article  CAS  PubMed  Google Scholar 

  7. Dhungana B, Ali S, Byamukama E et al (2019) Effects of temperature, water activity, and fungal isolate on ochratoxin A accumulation in oat grain inoculated with Penicillium verrucosum and development of a methodology to screen oat cultivars for ochratoxin A accumulation. Cereal Chem 96:950–957. https://doi.org/10.1002/cche.10199

    Article  CAS  Google Scholar 

  8. Pardo E, Marı́n S, Sanchis V, Ramos AJ (2004) Prediction of fungal growth and ochratoxin A production by Aspergillus ochraceus on irradiated barley grain as influenced by temperature and water activity. Int J Food Microbiol 95:79–88. https://doi.org/10.1016/j.ijfoodmicro.2004.02.003

    Article  CAS  PubMed  Google Scholar 

  9. Abu Yazid N, Barrena R, Komilis D, Sánchez A (2017) Solid-state fermentation as a novel paradigm for organic waste valorization: a review. Sustainability 9:224. https://doi.org/10.3390/su9020224

    Article  CAS  Google Scholar 

  10. Hamrouni R, Josiane M, Gregoria M et al (2019) From flasks to single used bioreactor: scale-up of solid state fermentation process for metabolites and conidia production by Trichoderma asperellum. J Environ Manage 252:109496. https://doi.org/10.1016/j.jenvman.2019.109496

    Article  CAS  Google Scholar 

  11. Pérez-Rodríguez N, Outeiriño D, Torrado Agrasar A, Domínguez JM (2017) Vine trimming shoots as substrate for ferulic acid esterases production. Appl Biochem Biotechnol 181:813–826. https://doi.org/10.1007/s12010-016-2251-0

    Article  CAS  PubMed  Google Scholar 

  12. Pérez-Rodríguez N, Moreira CD, Torrado Agrasar A, Domínguez JM (2016) Feruloyl esterase production by Aspergillus terreus CECT 2808 and subsequent application to enzymatic hydrolysis. Enzyme Microb Technol 91:52–58. https://doi.org/10.1016/j.enzmictec.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  13. Salgado JM, Abrunhosa L, Venâncio A et al (2015) Enhancing the bioconversion of winery and olive mill waste mixtures into lignocellulolytic enzymes and animal feed by Aspergillus uvarum using a packed-bed bioreactor. J Agric Food Chem 63:9306–9314. https://doi.org/10.1021/acs.jafc.5b02131

    Article  CAS  PubMed  Google Scholar 

  14. Samson RA, Noonim P, Meijer M et al (2007) Diagnostic tools to identify black aspergilli. Stud Mycol 59:129–145. https://doi.org/10.3114/sim.2007.59.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Frisvad JC, Møller LLH, Larsen TO et al (2018) Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl Microbiol Biotechnol 102:9481–9515. https://doi.org/10.1007/s00253-018-9354-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kang S (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91:153–156. https://doi.org/10.1016/S0960-8524(03)00172-X

    Article  CAS  PubMed  Google Scholar 

  17. Roukas T (2000) Citric and gluconic acid production from fig by Aspergillus niger using solid-state fermentation. J Ind Microbiol Biotechnol 25:298–304. https://doi.org/10.1038/sj.jim.7000101

    Article  CAS  PubMed  Google Scholar 

  18. García-Cela E, Crespo-Sempere A, Ramos AJ et al (2014) Ecophysiological characterization of Aspergillus carbonarius, Aspergillus tubingensis and Aspergillus niger isolated from grapes in Spanish vineyards. Int J Food Microbiol 173:89–98. https://doi.org/10.1016/j.ijfoodmicro.2013.12.012

    Article  CAS  PubMed  Google Scholar 

  19. Perrone G, Susca A, Cozzi G et al (2007) Biodiversity of Aspergillus species in some important agricultural products. Stud Mycol 59:53–66. https://doi.org/10.3114/sim.2007.59.07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bouras N, Mathieu F, Coppel Y et al (2007) Occurrence of naphtho-gamma-pyrones- and ochratoxin A-producing fungi in French grapes and characterization of new naphtho-gamma-pyrone polyketide (Aurasperone G) isolated from Aspergillus niger C-4331. J Agric Food Chem 55:8920–8927. https://doi.org/10.1021/jf071406z

    Article  CAS  PubMed  Google Scholar 

  21. Choque E, El Rayess Y, Raynal J, Mathieu F (2015) Fungal naphtho-γ-pyrones—secondary metabolites of industrial interest. Appl Microbiol Biotechnol 99:1081–1096. https://doi.org/10.1007/s00253-014-6295-1

    Article  CAS  PubMed  Google Scholar 

  22. Xu J (2015) Bioactive natural products derived from mangrove-associated microbes. RSC Adv 5:841–892. https://doi.org/10.1039/C4RA11756E

    Article  CAS  Google Scholar 

  23. Carboué Q, Maresca M, Herbette G et al (2019) Naphtho-gamma-pyrones produced by Aspergillus tubingensis G131: new source of natural nontoxic antioxidants. Biomolecules 10:29. https://doi.org/10.3390/biom10010029

    Article  CAS  PubMed Central  Google Scholar 

  24. Choque E, Klopp C, Valiere S et al (2018) Whole-genome sequencing of Aspergillus tubingensis G131 and overview of its secondary metabolism potential. BMC Genomics 19:200. https://doi.org/10.1186/s12864-018-4574-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lopez de Leon L, Caceres I, Bornot J et al (2019) Influence of the culture conditions on the production of NGPs by Aspergillus tubingensis. J Microbiol Biotechnol 29:1412–1423. https://doi.org/10.4014/jmb.1905.05015

    Article  CAS  PubMed  Google Scholar 

  26. Dilokpimol A, Mäkelä MR, Aguilar-Pontes MV et al (2016) Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications. Biotechnol Biofuels 9:231. https://doi.org/10.1186/s13068-016-0651-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Max B, Torrado AM, Moldes AB et al (2009) Ferulic acid and p-coumaric acid solubilization by alkaline hydrolysis of the solid residue obtained after acid prehydrolysis of vine shoot prunings: effect of the hydroxide and pH. Biochem Eng J 43:129–134. https://doi.org/10.1016/j.bej.2008.09.015

    Article  CAS  Google Scholar 

  28. Molyneux P (2004) The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol 26:212–219

    Google Scholar 

  29. Sindhi V, Gupta V, Sharma K et al (2013) Potential applications of antioxidants—a review. J Pharm Res 7:828–835. https://doi.org/10.1016/j.jopr.2013.10.001

    Article  CAS  Google Scholar 

  30. Carboué Q, Claeys-Bruno M, Bombarda I et al (2018) Experimental design and solid state fermentation: a holistic approach to improve cultural medium for the production of fungal secondary metabolites. Chemom Intell Lab Syst 176:101–107. https://doi.org/10.1016/j.chemolab.2018.03.011

    Article  CAS  Google Scholar 

  31. Saxena J, Munimbazi C, Bullerman LB (2001) Relationship of mould count, ergosterol and ochratoxin A production. Int J Food Microbiol 71:29–34. https://doi.org/10.1016/S0168-1605(01)00584-0

    Article  CAS  PubMed  Google Scholar 

  32. Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Transact A Math Phys Eng Sci 374:20150202. https://doi.org/10.1098/rsta.2015.0202

    Article  Google Scholar 

  33. Imran M, Hussain A, Anwar Z et al (2019) Beta-glucosidase production optimization from newly isolated Aspergillus tubingensis IMMIS2 using taguchi statistical design. Iran J Sci Technol Trans Sci 43:701–707. https://doi.org/10.1007/s40995-017-0462-z

    Article  Google Scholar 

  34. Lahouar A, Marin S, Crespo-Sempere A et al (2017) Influence of temperature, water activity and incubation time on fungal growth and production of ochratoxin A and zearalenone by toxigenic Aspergillus tubingensis and Fusarium incarnatum isolates in sorghum seeds. Int J Food Microbiol 242:53–60. https://doi.org/10.1016/j.ijfoodmicro.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  35. Trivedi S, Divecha J, Shah A (2012) Optimization of inulinase production by a newly isolated Aspergillus tubingensis CR16 using low cost substrates. Carbohydr Polym 90:483–490. https://doi.org/10.1016/j.carbpol.2012.05.068

    Article  CAS  PubMed  Google Scholar 

  36. Djajakirana G, Joergensen RG, Meyer B (1996) Ergosterol and microbial biomass relationship in soil. Biol Fertil Soils 22:299–304. https://doi.org/10.1007/BF00334573

    Article  CAS  Google Scholar 

  37. Gessner MO, Chauvet E (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microbiol 59:502–507

    Article  CAS  Google Scholar 

  38. Keller NP (2019) Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol 17:167–180. https://doi.org/10.1038/s41579-018-0121-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steudler S, Bley T (2015) Biomass estimation during macro-scale solid-state fermentation of basidiomycetes using established and novel approaches. Bioprocess Biosyst Eng 38:1313–1323. https://doi.org/10.1007/s00449-015-1372-0

    Article  CAS  PubMed  Google Scholar 

  40. Hegde S, Muralikrishna G (2009) Isolation and partial characterization of alkaline feruloyl esterases from Aspergillus niger CFR 1105 grown on wheat bran. World J Microbiol Biotechnol 25:1963–1969. https://doi.org/10.1007/s11274-009-0095-2

    Article  CAS  Google Scholar 

  41. da Silveira CL, Mazutti MA, Salau NPG (2014) Modeling the microbial growth and temperature profile in a fixed-bed bioreactor. Bioprocess Biosyst Eng 37:1945–1954. https://doi.org/10.1007/s00449-014-1170-0

    Article  CAS  PubMed  Google Scholar 

  42. Carboué Q, Rébufa C, Dupuy N et al (2019) Solid state fermentation pilot-scaled plug flow bioreactor, using partial least square regression to predict the residence time in a semicontinuous process. Biochem Eng J 149:107248. https://doi.org/10.1016/j.bej.2019.107248

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from Vinovalie (CIFRE ANRT number 2015/0027) is gratefully acknowledged.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quentin Carboué or Isabelle Bombarda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carboué, Q., Rébufa, C., Hamrouni, R. et al. Statistical approach to evaluate effect of temperature and moisture content on the production of antioxidant naphtho-gamma-pyrones and hydroxycinnamic acids by Aspergillus tubingensis in solid-state fermentation. Bioprocess Biosyst Eng 43, 2283–2294 (2020). https://doi.org/10.1007/s00449-020-02413-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02413-6

Keywords

Navigation