Skip to main content

Advertisement

Log in

Effect of Pyrolysis of Rice Husk–Derived Biochar on the Fuel Characteristics and Adsorption of Fluoride from Aqueous Solution

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Biochar obtained from pyrolysis of biomass finds multiple applications in combating environmental problems. However, the quality and quantity of biochar depends closely on the synthesis conditions and nature of the feedstock. The present study investigates the efficacy of employing rice husk–derived biochar for dual application: as a solid fuel and as an adsorbent. This study employs a response surface methodology (RSM) to optimize experimental parameters, temperature, time and heating rate. RSM provides linear and interaction effect amongst variables for selected responses, fuel ratio and percentage of fluoride removal. The optimum conditions for experimental factors (temperature, time and heating rate) were found to be 500 °C, 55 min and 7 °C/min. At the optimum conditions, the fuel ratio and percentage of fluoride removal were found to be 2.44 and 79.2% respectively. Moreover, the percentage of biochar yield at optimum conditions was found to be 40.7%. The Langmuir isotherm model was found to be applicable with a maximum monolayer adsorption capacity (Qm) of fluoride of 1.856 mg/g at 303 K. Thermodynamic studies demonstrated enhanced adsorption at lower temperature, and parameters such as change in free energy (ΔG) − 23.32 kJ mol−1, change in enthalpy (ΔH) 22.82 kJ mol−1 and change in entropy (ΔS) 0.15 kJ mol−1 K−1 indicate spontaneous nature of reaction. This study successfully converted biomass-derived biochar into a value-added product which could be used either as a solid fuel or as a potential adsorbent for effective removal of fluoride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shukla N, Sahoo D, Remya N (2019) Biochar from microwave pyrolysis of rice husk for tertiary wastewater treatment and soil nourishment. J Clean Prod 235:1073–1079. https://doi.org/10.1016/j.jclepro.2019.07.042

    Article  CAS  Google Scholar 

  2. Abbas Q, Liu G, Yousaf B, Ali MU, Ullah H, Munir MAM, Liu R (2018) Contrasting effects of operating conditions and biomass particle size on bulk characteristics and surface chemistry of rice husk derived-biochars. J Anal Appl Pyrolysis 134:281–292. https://doi.org/10.1016/j.jaap.2018.06.018

    Article  CAS  Google Scholar 

  3. Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energ Rev 38:594–608. https://doi.org/10.1016/j.rser.2014.06.013

    Article  CAS  Google Scholar 

  4. Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sust Energ Rev 55:467–481. https://doi.org/10.1016/j.rser.2015.10.122

    Article  CAS  Google Scholar 

  5. Angın D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593–597

  6. Yadav K, Tyagi M, Kumari S, Jagadevan S (2019) Influence of process parameters on optimization of biochar fuel characteristics derived from rice husk: a promising alternative solid fuel. Bioenergy Res 12:1052–1065. https://doi.org/10.1007/s12155-019-10027-4

    Article  CAS  Google Scholar 

  7. Yadav K, Jagadevan S (2019) Influence of process parameters on synthesis of biochar by pyrolysis of biomass: an alternative source of energy. In: Pyrolysis. IntechOpen, pp 1–14

  8. Yavari S, Malakahmad A, Sapari NB, Yavari S (2017) Synthesis optimization of oil palm empty fruit bunch and rice husk biochars for removal of imazapic and imazapyr herbicides. J Environ Manag 193:201–210. https://doi.org/10.1016/j.jenvman.2017.02.035

    Article  CAS  Google Scholar 

  9. Niazi NK, Bibi I, Shahid M, Ok YS, Shaheen SM, Rinklebe J, Wang H, Murtaza B, Islam E, Farrakh Nawaz M, Lüttge A (2018) Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: investigating arsenic fate using integrated spectroscopic and microscopic techniques. Sci Total Environ 621:1642–1651. https://doi.org/10.1016/j.scitotenv.2017.10.063

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Gao B, Fang J, Zou W, Dong L, Cao C, Zhang J, Li Y, Wang H (2019) Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs). Chemosphere 218:680–686. https://doi.org/10.1016/j.chemosphere.2018.11.144

    Article  CAS  PubMed  Google Scholar 

  11. Li R, Zhang Y, Deng H et al (2020) Removing tetracycline and hg(II) with ball-milled magnetic nanobiochar and its potential on polluted irrigation water reclamation. J Hazard Mater 384. https://doi.org/10.1016/j.jhazmat.2019.121095

  12. Yousaf B, Liu G, Abbas Q, Ali MU, Wang R, Ahmed R, Wang C, al-Wabel MI, Usman ARA (2018) Operational control on environmental safety of potentially toxic elements during thermal conversion of metal-accumulator invasive ragweed to biochar. J Clean Prod 195:458–469. https://doi.org/10.1016/j.jclepro.2018.05.246

    Article  CAS  Google Scholar 

  13. Kung C, Zhang N (2015) Renewable energy from pyrolysis using crops and agricultural residuals : an economic and environmental evaluation. Energy 90:1532–1544. https://doi.org/10.1016/j.energy.2015.06.114

    Article  CAS  Google Scholar 

  14. Gil MV, Riaza J, Álvarez L, Pevida C, Rubiera F (2015) Biomass devolatilization at high temperature under N2 and CO2: char morphology and reactivity. Energy 91:655–662. https://doi.org/10.1016/j.energy.2015.08.074

    Article  CAS  Google Scholar 

  15. Mašek O, Brownsort P, Cross A, Sohi S (2013) Influence of production conditions on the yield and environmental stability of biochar. Fuel 103:151–155. https://doi.org/10.1016/j.fuel.2011.08.044

    Article  CAS  Google Scholar 

  16. Menya E, Olupot PW, Storz H, Lubwama M, Kiros Y (2018) Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chem Eng Res Des 129:271–296. https://doi.org/10.1016/j.cherd.2017.11.008

    Article  CAS  Google Scholar 

  17. Bhatnagar A, Kumar E, Sillanpaa M (2011) Fluoride removal from water by adsorption-a review. Chem Eng J 171:811–840. https://doi.org/10.1016/j.cej.2011.05.028

    Article  CAS  Google Scholar 

  18. Susheela AK (1999) Fluorosis management programme in India. Curr Sci 77:1250–1256

    Google Scholar 

  19. Ayoob S, Gupta AK (2006) Fluoride in drinking water : a review on the status and stress effects fluoride in drinking water : a review

  20. Yadav KK, Gupta N, Kumar V, Khan SA, Kumar A (2018) A review of emerging adsorbents and current demand for defluoridation of water : bright future in water sustainability. Environ Int 111:80–108. https://doi.org/10.1016/j.envint.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  21. Meenakshi MRC (2006) Fluoride in drinking water and its removal. J Hazard Mater 137:456–463. https://doi.org/10.1016/j.jhazmat.2006.02.024

    Article  CAS  PubMed  Google Scholar 

  22. Kimambo V, Bhattacharya P, Mtalo F, Mtamba J, Ahmad A (2019) Fluoride occurrence in groundwater systems at global scale and status of defluoridation – state of the art. Groundw Sustain Dev 9:100223

    Article  Google Scholar 

  23. Pongener C, Bhomick PC, Supong A, Baruah M, Sinha UB, Sinha D (2018) Adsorption of fluoride onto activated carbon synthesized from Manihot esculenta biomass - equilibrium, kinetic and thermodynamic studies. J Environ Chem Eng 6:2382–2389. https://doi.org/10.1016/j.jece.2018.02.045

    Article  CAS  Google Scholar 

  24. Millar GJ, Couperthwaite SJ, Dawes LA, Thompson S, Spencer J (2017) Activated alumina for the removal of fluoride ions from high alkalinity groundwater: new insights from equilibrium and column studies with multicomponent solutions. Sep Purif Technol 187:14–24. https://doi.org/10.1016/j.seppur.2017.06.042

    Article  CAS  Google Scholar 

  25. Ye C, Yan B, Ji X, Liao B, Gong R, Pei X, Liu G (2019) Adsorption of fluoride from aqueous solution by fly ash cenospheres modified with paper mill lime mud: experimental and modeling. Ecotoxicol Environ Saf 180:366–373. https://doi.org/10.1016/j.ecoenv.2019.04.086

    Article  CAS  PubMed  Google Scholar 

  26. Mohapatra M, Anand S, Mishra BK, Giles DE, Singh P (2009) Review of fluoride removal from drinking water. J Environ Manag 91:67–77. https://doi.org/10.1016/j.jenvman.2009.08.015

    Article  CAS  Google Scholar 

  27. Miretzky P, Cirelli AF (2011) Fluoride removal from water by chitosan derivatives and composites: a review. J Fluor Chem 132:231–240. https://doi.org/10.1016/j.jfluchem.2011.02.001

    Article  CAS  Google Scholar 

  28. Araga R, Soni S, Sharma CS (2017) Fluoride adsorption from aqueous solution using activated carbon obtained from KOH-treated jamun (Syzygium cumini) seed. J Environ Chem Eng 5:5608–5616. https://doi.org/10.1016/j.jece.2017.10.023

    Article  CAS  Google Scholar 

  29. Meyer S, Glaser B, Quicker P (2011) Technical, economical and climate related aspects of biochar production technologies: a literature review. Environ Sci Technol 45:9473–9483. https://doi.org/10.1021/es201792c

    Article  CAS  PubMed  Google Scholar 

  30. Yadav AK, Abbassi R, Gupta A, Dadashzadeh M (2013) Removal of fluoride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane. Ecol Eng 52:211–218. https://doi.org/10.1016/j.ecoleng.2012.12.069

    Article  Google Scholar 

  31. Siddique A, Nayak AK, Singh J (2020) Synthesis of FeCl3-activated carbon derived from waste Citrus limetta peels for removal of fluoride: an eco-friendly approach for the treatment of groundwater and bio-waste collectively. Groundw Sustain Dev 10. https://doi.org/10.1016/j.gsd.2020.100339

  32. Mendoza-Castillo DI, Reynel-Ávila HE, Bonilla-Petriciolet A, Silvestre-Albero J (2016) Synthesis of denim waste-based adsorbents and their application in water defluoridation. J Mol Liq 221:469–478. https://doi.org/10.1016/j.molliq.2016.06.005

    Article  CAS  Google Scholar 

  33. Goswami R, Kumar M (2018) Removal of fluoride from aqueous solution using nanoscale rice husk biochar. Groundw Sustain Dev 7:446–451. https://doi.org/10.1016/j.gsd.2017.12.010

    Article  Google Scholar 

  34. Kumar P, Saraswat C, Mishra BK, Avtar R, Patel H, Patel A, Sharma T, Patel R (2017) Batch technique to evaluate the efficiency of different natural adsorbents for defluoridation from groundwater. Appl Water Sci 7:2597–2606. https://doi.org/10.1007/s13201-016-0473-5

    Article  CAS  Google Scholar 

  35. Pillai P, Lakhtaria Y, Dharaskar S, Khalid M (2020) Synthesis, characterization, and application of iron oxyhydroxide coated with rice husk for fluoride removal from aqueous media. Environ Sci Pollut Res 27:20606–20620. https://doi.org/10.1007/s11356-019-05948-8

    Article  CAS  Google Scholar 

  36. Ali I, Asim M, Khan TA (2012) Low cost adsorbents for the removal of organic polutants from waste water. Environ Manag 113:170–183. https://doi.org/10.1016/j.jenvman.2012.08.028

    Article  CAS  Google Scholar 

  37. Isa KM, Daud S, Hamidin N, Ismail K, Saad SA, Kasim FH (2011) Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM). Ind Crop Prod 33:481–487. https://doi.org/10.1016/j.indcrop.2010.10.024

    Article  CAS  Google Scholar 

  38. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  39. Tyagi M, Rana A, Kumari S, Jagadevan S (2018) Adsorptive removal of cyanide from coke oven wastewater onto zero-valent iron : optimization through response surface methodology, isotherm and kinetic studies. J Clean Prod 178:398–407. https://doi.org/10.1016/j.jclepro.2018.01.016

    Article  CAS  Google Scholar 

  40. Zhang C, Yang L, Rong F, Fu D, Gu Z (2012) Boron-doped diamond anodic oxidation of ethidium bromide: process optimization by response surface methodology. Electrochim Acta 64:100–109. https://doi.org/10.1016/j.electacta.2011.12.122

    Article  CAS  Google Scholar 

  41. Lin L, Yan R, Liu Y, Jiang W (2010) In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components : cellulose , hemicellulose and lignin. Bioresour Technol 101:8217–8223. https://doi.org/10.1016/j.biortech.2010.05.084

    Article  CAS  PubMed  Google Scholar 

  42. Wu W, Li J, Niazi NK, Müller K, Chu Y, Zhang L, Yuan G, Lu K, Song Z, Wang H (2016) Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments. Environ Sci Pollut Res 23:22890–22896. https://doi.org/10.1007/s11356-016-7428-0

    Article  CAS  Google Scholar 

  43. Lata S, Prabhakar R, Adak A, Samadder SR (2019) As(V) removal using biochar produced from an agricultural waste and prediction of removal efficiency using multiple regression analysis. Environ Sci Pollut Res 26:32175–32188. https://doi.org/10.1007/s11356-019-06300-w

    Article  CAS  Google Scholar 

  44. Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116. https://doi.org/10.1016/j.watres.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  45. Kasperiski FM, Lima EC, Umpierres CS, dos Reis GS, Thue PS, Lima DR, Dias SLP, Saucier C, da Costa JB (2018) Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: highly efficient removal of captopril from aqueous solutions. J Clean Prod 197:919–929. https://doi.org/10.1016/j.jclepro.2018.06.146

    Article  CAS  Google Scholar 

  46. Behbahani M, Moghaddam MRA, Arami M (2011) Techno-economical evaluation of fluoride removal by electrocoagulation process: optimization through response surface methodology. Desalination 271:209–218. https://doi.org/10.1016/j.desal.2010.12.033

    Article  CAS  Google Scholar 

  47. Kumar S, Masto RE, Ram LC, Sarkar P, George J, Selvi VA (2013) Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Ecol Eng 55:67–72. https://doi.org/10.1016/j.ecoleng.2013.02.011

    Article  Google Scholar 

  48. Alkurdi SSA, Al-juboori RA, Bundschuh J, Bowtell L (2020) Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal. Environ Pollut 114221:114221. https://doi.org/10.1016/j.envpol.2020.114221

    Article  CAS  Google Scholar 

  49. Devi P, Saroha AK (2015) Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge. Bioresour Technol 192:312–320. https://doi.org/10.1016/j.biortech.2015.05.084

    Article  CAS  PubMed  Google Scholar 

  50. Wang L, Bolan NS, Tsang DCW, Hou D (2020) Green immobilization of toxic metals using alkaline enhanced rice husk biochar : effects of pyrolysis temperature and KOH concentration. Sci Total Environ 720:137584

    Article  CAS  Google Scholar 

  51. Ahmad M, Lee SS, Dou X, Mohan D, Sung JK, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544. https://doi.org/10.1016/j.biortech.2012.05.042

    Article  CAS  PubMed  Google Scholar 

  52. Pariyar P, Kumari K, Jain MK, Jadhao PS (2020) Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci Total Environ 713:136433. https://doi.org/10.1016/j.scitotenv.2019.136433

    Article  CAS  PubMed  Google Scholar 

  53. Ekka B, Dhaka RS, Patel RK, Dash P (2017) Fluoride removal in waters using ionic liquid-functionalized alumina as a novel adsorbent. J Clean Prod 151:303–318. https://doi.org/10.1016/j.jclepro.2017.03.061

    Article  CAS  Google Scholar 

  54. Mor S, Chhoden K, Ravindra K (2016) Application of agro-waste rice husk ash for the removal of phosphate from the wastewater. J Clean Prod 129:673–680. https://doi.org/10.1016/j.jclepro.2016.03.088

    Article  CAS  Google Scholar 

  55. Ndi Nsami J, Ketcha Mbadcam J (2013) The adsorption efficiency of chemically prepared activated carbon from cola nut shells by ZnCl2 on methylene blue. J Chem 2013:1–7. https://doi.org/10.1155/2013/469170

    Article  CAS  Google Scholar 

  56. Mane VS, Mall ID, Srivastava VC (2007) Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution. Dyes Pigments 73:269–278. https://doi.org/10.1016/j.dyepig.2005.12.006

    Article  CAS  Google Scholar 

  57. Ramos RL, Ovalle-Turrubiartes J, Sanchez-Castillo MA (1999) Adsorption of fluoride from aqueous solution on aluminum-impregnated carbon. Carbon N Y 37:609–617

    Article  CAS  Google Scholar 

  58. Mohan D, Sharma R, Singh VK, Steele P, Pittman CU Jr (2012) Fluoride removal from water using bio-char, a green waste, low-cost adsorbent: equilibrium uptake and sorption dynamics modeling. Ind Eng Chem Res 51:900–914. https://doi.org/10.1021/ie202189v

    Article  CAS  Google Scholar 

  59. Sinha S, Pandey K, Mohan D, Singh KP (2003) Removal of fluoride from aqueous solutions by Eichhornia crassipes biomass and its carbonized form. 6911–6918

  60. Medellin-Castillo NA, Leyva-Ramos R, Padilla-Ortega E, Perez RO, Flores-Cano JV, Berber-Mendoza MS (2014) Adsorption capacity of bone char for removing fluoride from water solution. Role of hydroxyapatite content, adsorption mechanism and competing anions. J Ind Eng Chem 20:4014–4021. https://doi.org/10.1016/j.jiec.2013.12.105

    Article  CAS  Google Scholar 

  61. Sarkar B, Xi Y, Megharaj M, Krishnamurti GSR, Naidu R (2010) Synthesis and characterisation of novel organopalygorskites for removal of p-nitrophenol from aqueous solution: isothermal studies. J Colloid Interface Sci 350:295–304. https://doi.org/10.1016/j.jcis.2010.06.030

    Article  CAS  PubMed  Google Scholar 

  62. Lyubchik SI, Lyubchik AI, Galushko OL, Tikhonova LP, Vital J, Fonseca IM, Lyubchik SB (2004) Kinetics and thermodynamics of the Cr(III) adsorption on the activated carbon from co-mingled wastes. Coll Surfac A Physicochem Eng Asp 242:151–158. https://doi.org/10.1016/j.colsurfa.2004.04.066

    Article  CAS  Google Scholar 

  63. Liu Y, Liu Y (2008) Biosorption isotherms , kinetics and thermodynamics. Sep Purif Technol 61:229–242. https://doi.org/10.1016/j.seppur.2007.10.002

    Article  CAS  Google Scholar 

  64. Khan MA, Wook KS, Rao RAK et al (2010) Adsorption studies of dichloromethane on some commercially available GACs: effect of kinetics, thermodynamics and competitive ions. J Hazard Mater 178:963–972. https://doi.org/10.1016/j.jhazmat.2010.02.032

    Article  CAS  PubMed  Google Scholar 

  65. Akafu T, Chimdi A, Gomoro K (2019) Removal of fluoride from drinking water by sorption using diatomite modified with aluminum hydroxide. J Anal Methods Chem 2019:1–11. https://doi.org/10.1155/2019/4831926

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, for rendering the experimental facilities.

Funding

This research was financially supported by FRS Scheme of IIT(ISM) (Ref No. FRS/86/2014-2015/ESE) and PhD studentship for K.Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheeja Jagadevan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 614 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, K., Jagadevan, S. Effect of Pyrolysis of Rice Husk–Derived Biochar on the Fuel Characteristics and Adsorption of Fluoride from Aqueous Solution. Bioenerg. Res. 14, 964–977 (2021). https://doi.org/10.1007/s12155-020-10189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10189-6

Keywords

Navigation