Skip to main content
Log in

Droplet-based Synthesis of Homogeneous Gold Nanoparticles for Enhancing HRP-based ELISA Signals

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) have widely used for various biological applications, such as drug screening, photo-thermal therapy, and biosensing. In particular, the synthesis of AuNPs with narrow size distribution plays an important role in increasing the efficiency of nanoparticle-mediated biosensors. However, the conventional synthesis methods (e.g., citrate reduction method) still suffer from controlling the sizes of the nanoparticles. In this paper, we present the synthesis method of homogeneous AuNPs using a droplet-based microfluidic chip. Prior to experiments, we optimized the size of droplets using a simulation software for stable droplet generation. We demonstrated that the nanoparticles synthesized in our microfluidic chip system showed a narrower size distribution and a higher reproducibility compared to conventional batch synthesis. Furthermore, we observed that the signal of anti-horseradish peroxidase (HRP) was significantly enhanced by the droplet-based microfluidic chip. Therefore, our synthesis method of homogeneous AuNPs could play an important role in improving the efficiency of AuNPs-based sensing signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Mohanraj, V. & Chen, Y. Nanoparticles-a review. Trop. J. Pharm. Res. 5, 561–573 (2006).

    Google Scholar 

  2. Khan, I., Saeed, K. & Khan, I. Nanoparticles: Properties, applications and toxicities. Arabian J. Chem. 12, 908–931 (2019).

    Article  CAS  Google Scholar 

  3. Slowing, I.I., Trewyn, B.G., Giri, S. & Lin, V.Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 17, 1225–1236 (2007).

    Article  CAS  Google Scholar 

  4. Lee, M.J., Lee, E.S., Kim, T.H., Jeon, J.W., Kim, Y.T. & Oh, B.K. Detection of thioredoxin-1 using ultra-sensitive ELISA with enzyme-encapsulated human serum albumin nanoparticle. Nano Convergence 6, 37 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mun, S.G., Choi, H.W., Lee, J.M., Lim, J.H., Ha, J.H., Kang, M.J., Kim, E.J., Kang, L. & Chung, B. GrGO nanomaterial-mediated cancer targeting and photothermal therapy in a microfluidic co-culture platform. Nano Convergence 7, 10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Farokhzad, O.C., Cheng, J., Teply, B.A., Sherifi, I., Jon, S., Kantoff, P.W., Richie, J.P. & Langer, R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. U. S. A. 103, 6315–6320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brigger, I., Dubernet, C. & Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Delivery Rev. 54, 631–651 (2002).

    Article  CAS  Google Scholar 

  8. Nunna, B.B., Mandal, D., Lee, J.U., Singh, H., Zhuang, S., Misra, D., Bhuyian, M.N.U. & Lee, E.S. Detection of cancer antigens (CA-125) using gold nano particles on interdigitated electrode-based microfluidic biosensor. Nano Convergence 6, 3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Doria, G., Conde, J., Veigas, B., Giestas, L., Almeida, C., Assunção, M., Rosa, J. & Pedro V.B. Noble metal nanoparticles for biosensing applications. Sensors 12, 1657–1687 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Priyadarshini, E. & Pradhan, N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review. Sens. Actuators, B 238, 888–902 (2017).

    Article  CAS  Google Scholar 

  11. Zhang, Y., Zhan, X., Xiong, J., Peng, S., Huang, W., Joshi, R., Cai, Y., Liu, Y., Li, R., Yuan, K., Zhou, N. & Min, W. Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci. Rep. 8, 8720 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Maiorano, G., Mele, E., Frassanito, M.C., Restini, E., Athanassiou, A, & Pomppa, P.P. Ultra-efficient, widely tunable gold nanoparticle-based fiducial markers for X-ray imaging. Nanoscale 8, 18921–18927 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Vega, F.D.C., Martinez Torres, P.G., Molina, J.P., Gomez Ortiz, N.M., Hadjiev, V.G., Medina, J.Z. & Robles Hernandez, F.C. Gold nanoparticle SERS substrates sustainable at extremely high temperatures. J. Mater. Chem. C 5, 4959–4966 (2017).

    Article  Google Scholar 

  14. Grassian, V.H. When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J. Phys. Chem. C 112, 18303–18313 (2008).

    Article  CAS  Google Scholar 

  15. Weng, C.H., Huang, C.C., Yeh, C.S., Lei, H.Y. & Lee, G.B. Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system. J. Micromech. Microeng. 18, 035019 (2008).

    Article  CAS  Google Scholar 

  16. Rasouli, M.R. & Tabrizian, M. An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles. Lab Chip 19, 3316–3325 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Alex, S. & Tiwari, A. Functionalized gold nanoparticles: synthesis, properties and applications—a review. J. Nanosci. Nanotechnol. 15, 1869–1894 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Turkevich, J., Stevenson, P.C. & Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951).

    Article  Google Scholar 

  19. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys. Sci. 241, 20–22 (1973).

    Article  CAS  Google Scholar 

  20. Ziegler, C. & Eychmuller, A. Seeded growth synthesis of uniform gold nanoparticles with diameters of 15–300 nm. J. Phys. Chem. C 115, 4502–4506 (2011).

    Article  CAS  Google Scholar 

  21. Li, C., Li, D., Wan, G., Xu, J. & Hou, W. Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and pH controls. Nanoscale Res. Lett. 6, 440 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kim, Y., Chung, B.L., Ma, M., Mulder, W.J.M., Fayad, Z.A., Farokhzad, O.C. & Langer, R. Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices. Nano Lett. 12, 3587–3591 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luo, X., Su, P., Zhang, W. & Raston, C.L. Micro-fluidic devices in fabricating nano or micromaterials for biomedical applications. Adv. Mater. Technol. 4, 1900488 (2019).

    Article  CAS  Google Scholar 

  24. Zhang, X., Ma, S., Li, A., Chen, L., Lu, J., Geng, X., Xie, M., Liang, X., Wan, Y. & Yang, P. Continuous high-flux synthesis of gold nanoparticles with controllable sizes: a simple microfluidic system. Appl. Nanosci. 10, 661–669 (2020).

    Article  CAS  Google Scholar 

  25. Lohse, S.E., Eller, J.R., Sivapalan, S.T., Plews, M.R. & Murphy, C.J. A simple millifluidic benchtop reactor system for the high-throughput synthesis and functionalization of gold nanoparticles with different sizes and shapes. ACS Nano 7, 4135–4150 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Yagyu, H., Tanabe, Y., Takano, S. & Hamamoto, M. Continuous flow synthesis of monodisperse gold nanoparticles by liquid-phase reduction method on glass microfluidic device. Micro Nano Lett. 12, 536–539 (2017).

    Article  CAS  Google Scholar 

  27. Uson, L., Sebastian, V., Arruebo, M. & Santamaria, J. Continuous microfluidic synthesis and functionalization of gold nanorods. Chem. Eng. J. 285, 286–292 (2016).

    Article  CAS  Google Scholar 

  28. Carugo, D., Bottaro, E., Owen, J., Stride, E. & Nastruzzi, C. Liposome production by microfluidics: potential and limiting factors. Sci. Rep. 6, 25876 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sebastian Cabeza, V., Kuhn, S., Kulkarni, A.A. & Jensen, K.F. Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform. Langmuir 28, 7007–7013 (2012).

    Article  CAS  Google Scholar 

  30. Hafermann, L. & Köhler, J.M. Small gold nanoparticles formed by rapid photochemical flow-through synthesis using microfluid segment technique. J. Nanopart. Res. 17, 99 (2015).

    Article  CAS  Google Scholar 

  31. Abalde-Cela, S., Taladriz-Blanco, P., de Oliveira, M.G. & Abell, C. Droplet microfluidics for the highly controlled synthesis of branched gold nanoparticles. Sci. Rep. 8, 2440 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Yesiloz, G., Boybay, M.S. & Ren, C.L. Effective thermo-capillary mixing in droplet microfluidics integrated with a microwave heater. Anal. Chem. 89, 1978–1984 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Li, D.E. & Lin, C.H. Microfluidic chip for droplet-based AuNP synthesis with dielectric barrier discharge plasma and on-chip mercury ion detection. RSC Adv. 8, 16139–16145 (2018).

    Article  CAS  Google Scholar 

  34. Wang, J., Jin, M., Gong, Y., Li, H., Wu, S., Zhang, Z., Zhou, G., Shui, L., Eijkel, J.C.T. & van den Berg, A. Continuous fabrication of microcapsules with controllable metal covered nanoparticle arrays using droplet microfluidics for localized surface plasmon resonance. Lab Chip 17, 1970–1979 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Zhan, L., Wu, W.B., Yang, X.X. & Huang, C.Z. Gold nanoparticle-based enhanced ELISA for respiratory syncytial virus. New J. Chem. 38, 2935–2940 (2014).

    Article  CAS  Google Scholar 

  36. Ciaurriz, P., Fernández, F., Tellechea, E., Moran, J.F. & Asensio, A.C. Comparison of four functionalization methods of gold nanoparticles for enhancing the enzyme-linked immunosorbent assay (ELISA). Beilstein J. Nanotechnol. 8, 244–253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoon, D.H., Tanaka, D., Sekiguchi, T. & Shoji, S. Structural formation of oil-in-water (O/W) and water-in-oil-in-water (W/O/W) droplets in PDMS device using protrusion channel without hydrophilic surface treatment. Micromachines 9, 468 (2018).

    Article  PubMed Central  Google Scholar 

  38. Qian, J.Y., Li, X.J., Gao, Z.X. & Jin, Z.J. Mixing efficiency analysis on droplet formation process in microchannels by numerical methods. Processes 7, 33 (2019).

    Article  CAS  Google Scholar 

  39. Wang, J., Wang, J., Feng, L. & Lin, T. Fluid mixing in droplet-based microfluidics with a serpentine microchannel. RSC Adv. 5, 104138–104144 (2015).

    Article  CAS  Google Scholar 

  40. Panariello, L., Damilos, S., du Toit, H., Wu, G., Radhakrishnan, A.N.P., Parkin, I.P. & Gavriilidis, A. Highly reproducible, high-yield flow synthesis of gold nanoparticles based on a rational reactor design exploiting the reduction of passivated Au (iii). React. Chem. Eng. 5, 663–676 (2020).

    Article  CAS  Google Scholar 

  41. Aji, A., Santosa, S.J. & Kunarti, E.S. Effect of Reaction Time and Stability Properties of Gold Nanoparticles Synthesized by p-Aminobenzoic Acid and p-Aminosalicylic Acid. Indones. J. Chem. 20, 413–421 (2020).

    Article  CAS  Google Scholar 

  42. Kim, W.J., Hyun, S.H., Cho, H.Y., Byun, S., Kim, B.K., Huh, C., Chung, K.H. & Kim, Y.J. Sensitive “capillary elisa” via vapor-phase surface modification. Sens. Actuators, B 233, 281–288 (2016).

    Article  CAS  Google Scholar 

  43. Wu, H., Liu, Y., Li, M., Chong, Y., Zeng, M., Lo, Y.M. & Yin, J.-J. Size-dependent tuning of horseradish peroxidase bioreactivity by gold nanoparticles. Nanoscale 7, 4505–4513 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, W.J., Cho, H.Y., Jeong, B., Byun, S., Huh, J.D. & Kim, Y.J. Synergistic Use of Gold Nanoparticles (AuNPs) and “Capillary Enzyme-Linked Immunosorbent Assay (ELISA)” for High Sensitivity and Fast Assays. Sensors 18, 55 (2018).

    Article  CAS  Google Scholar 

  45. Choi, J.W., Lee, J.M., Kim T.H., Ha, J.H., Ahrberg, C.D. & Chung, B.G. Dual-nozzle microfluidic droplet generator. Nano Convergence 5, 12 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation (NRF) funded by the Ministry of Science and ICT (MSIT) (Grant number 2015M3D3A1A01064926, 2019M3A9H2032547). This research was supported by BioNano Health-Guard Research Center funded by the MSIT of Korea as Global Frontier Project (Grant number H-GUARD_2013M3A6B2078950 (2014M3A6B2060302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong Geun Chung.

Ethics declarations

Conflict of Interests The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.W., Kim, Y.J., Lee, J.M. et al. Droplet-based Synthesis of Homogeneous Gold Nanoparticles for Enhancing HRP-based ELISA Signals. BioChip J 14, 298–307 (2020). https://doi.org/10.1007/s13206-020-4307-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-020-4307-z

Keywords

Navigation