Skip to main content
Log in

Charge photogeneration and Recombination in Ternary Organic Photovoltaic Blend PCDTBT/PC60BM/ICBA Studied by EPR Spectroscopy

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Using the stationary and pulsed EPR methods, the ternary composite PCDTBT and two fullerene acceptors PCDTBT/PC60BM/ICBA 1:1:1, as well as the corresponding binary composites PCDTBT/PC60BM 1:2 and PCDTBT/ICBA 1:2, were studied at a temperature of 80 K. Modeling these spectra allows us to estimate the contributions of PC60BM and ICBA to the light-induced EPR signal of the PCDTBT/PC60BM/ICBA ternary composite as 0.7:0.3. The absence of new lines in the EPR spectrum of the ternary composite, in comparison with the corresponding binary ones, means that the mechanism of the molecular alloy of PC60BM and ICBA, as previously assumed, is not operative in this system, and the most probable scenario is the existence of two parallel heterojunctions PCDTBT/PC60BM and PCDTBT/ICBA. This conclusion is confirmed by modeling the decay curves of the light-induced EPR upon turning off the light, as well as the out-of-phase electron spin echo from the charge transfer state (the main intermediate of the photoelectric conversion) in these composites. It is noteworthy that in the ternary composite with the same fullerene acceptors, but with a different polymer donor (P3HT), the molecular alloy mechanism of two acceptors is realized (Angmo et al. in J Mater Chem C 3: 5541–5548, 2015). It is likely that the polymer donor has a decisive influence on the morphology and electron-transport properties of such ternary composites. It should be noted that the methods of light-induced EPR and out-of-phase ESE were used for the first time to study ternary donor–acceptor composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X. Du, Y. Yuan, L. Zhou, H. Lin, C. Zheng, J. Luo, Z. Chen, S. Tao, L.-S. Liao, Adv. Funct. Mater. 30, 1909837 (2020)

    Article  Google Scholar 

  2. L. Pasimeni, L. Franco, M. Ruzzi, A. Mucci, L. Schenetti, C. Luo, D.M. Guldi, K. Kordatos, M. Prato, J. Mater. Chem. 11, 981 (2001)

    Article  Google Scholar 

  3. C. Deibel, T. Strobel, V. Dyakonov, Adv. Mater. 22, 4097 (2010)

    Article  Google Scholar 

  4. J. Niklas, S. Beaupré, M. Leclerc, T. Xu, L. Yu, A. Sperlich, V. Dyakonov, O.G. Poluektov, J. Phys. Chem. B 119, 7407 (2015)

    Article  Google Scholar 

  5. A. Konkin, A. Popov, U. Ritter, S. Orlinskii, G. Mamin, A. Aganov, A.A. Konkin, P. Scharff, J. Phys. Chem. C 120, 28905 (2016)

    Article  Google Scholar 

  6. F. Kraffert, J. Behrends, Mol. Phys. 115, 2373 (2017)

    Article  ADS  Google Scholar 

  7. E.A. Lukina, E. Suturina, E. Reijerse, W. Lubitz, L.V. Kulik, Phys. Chem. Chem. Phys. 19, 22141 (2017)

    Article  Google Scholar 

  8. Y. Hou, X. Zhang, K. Chen, D. Liu, Z. Wang, Q. Liu, J. Zhao, A. Barbon, J. Mater. Chem. 7, 12048 (2019)

    Google Scholar 

  9. E.A. Lukina, E. Reijerse, W. Lubitz, L.V. Kulik, Mol. Phys. 117, 2654 (2019)

    Article  ADS  Google Scholar 

  10. E.A. Lukina, A.A. Popov, M.N. Uvarov, L.V. Kulik, J. Phys. Chem. B 119, 13543 (2015)

    Article  Google Scholar 

  11. E.A. Lukina, A.A. Popov, M.N. Uvarov, E.A. Suturina, E.J. Reijerse, L.V. Kulik, Phys. Chem. Chem. Phys. 18, 28585 (2016)

    Article  Google Scholar 

  12. M.N. Uvarov, L.V. Kulik, Appl. Magn. Reson. 50, 1277 (2019)

    Article  Google Scholar 

  13. S. Wakim, S. Beaupre, N. Blouin, B.-R. Aich, S. Rodman, R. Gaudiana, Y. Tao, M. Leclerc, J. Mater. Chem. 19, 5351 (2009)

    Article  Google Scholar 

  14. E.A. Beletskaya, E.A. Lukina, M.N. Uvarov, A.A. Popov, L.V. Kulik, J. Chem. Phys. 152, 044706 (2020)

    Article  ADS  Google Scholar 

  15. V. Dyakonov, G. Zoriniants, M. Scharber, C.J. Brabec, R.A.J. Janssen, J.C. Hummelen, N.S. Sariciftci, Phys. Rev. B 59, 8019 (1999)

    Article  ADS  Google Scholar 

  16. H. Tanama, N. Hasegawa, T. Sakamoto, K. Marumoto, S.-I. Kuroda, Jpn. J. Appl. Phys. 46, 5187 (2007)

    Article  ADS  Google Scholar 

  17. E.A. Lukina, M.N. Uvarov, L.V. Kulik, J. Phys. Chem. C 118, 18307 (2014)

    Article  Google Scholar 

  18. J. Niklas, K.L. Mardis, B.P. Banks, G.M. Grooms, A. Sperlich, V. Dyakonov, S. Beaupre, M. Leclerc, T. Xu, L. Yu, O.G. Poluektov, Phys. Chem. Chem. Phys. 15, 956 (2013)

    Article  Google Scholar 

  19. J. De Ceuster, E. Goovaerts, A. Bouwen, J.C. Hummelen, V. Dyakonov, Phys. Rev. B 64, 195206 (2001)

    Article  ADS  Google Scholar 

  20. D. Angmo, M. Bjerring, N.C. Nielsen, B.C. Thompson, F.C. Krebs, J. Mater. Chem. C 3, 5541 (2015)

    Article  Google Scholar 

  21. S.A. Dzuba, P. Gast, A.J. Hoff, Chem. Phys. Lett. 236, 595 (1995)

    Article  ADS  Google Scholar 

  22. K.M. Salikhov, YuE Kandrashkin, A.K. Salikhov, Appl. Magn. Reson. 3, 199 (1992)

    Article  Google Scholar 

  23. J. Tang, M.C. Thurnauer, A. Kubo, H. Hara, A. Kawamori, J. Chem. Phys. 106, 7471 (1997)

    Article  ADS  Google Scholar 

  24. A.J. Hoff, P. Gast, S.A. Dzuba, C.R. Timmel, C.E. Fursman, P.J. Hore, Spectrochim. Acta A 54, 2283 (1998)

    Article  ADS  Google Scholar 

  25. L. Lu, M.A. Kelly, W. You, L. Yu, Nat. Photonics 9, 491 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Russian Foundation for Basic Research, grant 19-03-00149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid V. Kulik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulik, L.V., Uvarov, M.N. Charge photogeneration and Recombination in Ternary Organic Photovoltaic Blend PCDTBT/PC60BM/ICBA Studied by EPR Spectroscopy. Appl Magn Reson 51, 1071–1078 (2020). https://doi.org/10.1007/s00723-020-01258-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01258-2

Navigation