Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 17, 2020

Trigonometric identities inspired by the atomic form factor

  • Abhijit Sen and Zurab K. Silagadze ORCID logo EMAIL logo

Abstract

We prove some trigonometric identities involving Chebyshev polynomials of the second kind. The identities were inspired by atomic form factor calculations. Generalizations of these identities, if found, will help to increase the numerical stability of atomic form factor calculations for highly excited states.

MSC 2010: 33C45; 33B10; 81U05

Award Identifier / Grant number: 20-02-00697-a

Funding statement: This work is supported by the Ministry of Education and Science of the Russian Federation and in part by RFBR grant 20-02-00697-a.

Acknowledgements

The authors thank the anonymous referee for constructive remarks.

References

[1] L. Afanasyev, Last results of dirac experiment on study hadronic hydrogen-like atoms at ps cern, Nucl. Part. Phys. Proc. 273–275 (2016), 1997–2002. 10.1016/j.nuclphysbps.2015.09.323Search in Google Scholar

[2] L. Afanasyev and A. Tarasov, Elastic form factors of hydrogenlike atoms in ns-states, JINR Preprint E4-93-293, 1993; also in the book http://www1.jinr.ru/Books/book\_Tarasov.pdf, 90–93. Search in Google Scholar

[3] L. Afanasyev and A. Tarasov, Breakup of relativistic π+π- atoms in matter, Phys. At. Nucl. 59 (1996), 2130–2136. Search in Google Scholar

[4] L. Afanasyev, A. Tarasov and O. Voskresenskaya, Total interaction cross sections of relativistic π+π--atoms with ordinary atoms in the eikonal approach, J. Phys. G 25 (1999), no. 8, B7–B10. 10.1088/0954-3899/25/8/701Search in Google Scholar

[5] R. S. Alassar, H. A. Mavromatis and S. A. Sofianos, A new integral involving the product of Bessel functions and associated Laguerre polynomials, Acta Appl. Math. 100 (2008), no. 3, 263–267. 10.1007/s10440-007-9183-1Search in Google Scholar

[6] N. Arteaga-Romero, C. Carimalo and V. Serbo, Production of bound triplet μ+μ- system in collisions of electrons with atoms, Phys. Rev. D 35 (1987), no. 7, 2124–2129. Search in Google Scholar

[7] V. Baier and V. Synakh, Bimuonium production in electron-positron collisions, Sov. Phys. JETP 14 (1962), no. 5, 1122–1125. Search in Google Scholar

[8] W. Bailey, On the product of two laguerre polynomials, Quart. J. Math. 10 (1939), no. 1, 60–66. 10.1093/qmath/os-10.1.60Search in Google Scholar

[9] A. Banburski and P. Schuster, Production and discovery of true muonium in fixed-target experiments, Phys. Rev. D 86 (2012), no. 9, Article ID 093007. 10.1103/PhysRevD.86.093007Search in Google Scholar

[10] S. Bilenky, V. Nguyen, L. Nemenov and F. Tkebuchava, Production and decay of μ+μ--atoms, Yad. Fiz. 10 (1969), 812–814. Search in Google Scholar

[11] A. Bogomyagkov, V. Druzhinin, E. Levichev, A. Milstein and S. Sinyatkin, Low-energy electron-positron collider to search and study μ+μ- bound state, EPJ Web Conf. 181 (2018), Article ID 01032. 10.1051/epjconf/201818101032Search in Google Scholar

[12] S. Brodsky and R. Lebed, Production of the smallest qed atom: True muonium (μ+μ-), Phys. Rev. Lett. 102 (2009), no. 21, Article ID 213401. 10.1103/PhysRevLett.102.213401Search in Google Scholar PubMed

[13] L. Carlitz, On the product of two Laguerre polynomials, J. Lond. Math. Soc. 36 (1961), 399–402. 10.1112/jlms/s1-36.1.399Search in Google Scholar

[14] Y. Chen and P. Zhuang, Dimuonium μ+μ- production in a quark-gluon plasma, preprint (2012), https://arxiv.org/abs/1204.4389. Search in Google Scholar

[15] D. Dewangan, Asymptotic methods for Rydberg transitions, Phys. Rep. 511 (2012), no. 1–2, 1–142. 10.1016/j.physrep.2011.10.001Search in Google Scholar

[16] S. Ellis and J. Bland-Hawthorn, Astrophysical signatures of leptonium, Eur. Phys. J. D 72 (2018), no. 1, Article No. 18. 10.1140/epjd/e2017-80488-7Search in Google Scholar

[17] M. Fael and T. Mannel, On the decays bk(*)+ leptonium, Nucl. Phys. B 932 (2018), 370–384. 10.1016/j.nuclphysb.2018.05.015Search in Google Scholar

[18] E. Feldheim, Expansions and integral-transforms for products of Laguerre and Hermite polynomials, Quart. J. Math. Oxford Ser. 11 (1940), 18–29. 10.1093/qmath/os-11.1.18Search in Google Scholar

[19] I. Ginzburg, U. Jentschura, S. Karshenboim, F. Krauss, V. Serbo and G. Soff, Production of bound μ+μ- systems in relativistic heavy ion collisions, Phys. Rev. C 58 (1998), no. 6, 3565–3573. 10.1103/PhysRevC.58.3565Search in Google Scholar

[20] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 4th ed., Academic Press, New York, 1965. Search in Google Scholar

[21] E. Holvik and H. Olsen, Creation of relativistic fermionium in collisions of electrons with atoms, Phys. Rev. A 62 (2000), no. 3, Article ID 032501. 10.1103/PhysRevD.35.2124Search in Google Scholar

[22] T. Itahashi, H. Sakamoto, A. Sato and K. Takahisa, Low energy muon apparatus for true muonium production, JPS Conf. Proc. 8 (2015), Article ID 025004. 10.7566/JPSCP.8.025004Search in Google Scholar

[23] Y. Ji and H. Lamm, Discovering true muonium in kl(μ+μ-)γ, Phys. Rev. D 98 (2018), no. 5, Article ID 053008. Search in Google Scholar

[24] Y. Ji and H. Lamm, Scouring meson decays for true muonium, preprint (2018), https://arxiv.org/abs/1810.00233. 10.1103/PhysRevD.99.033008Search in Google Scholar

[25] G. Kozlov, On the problem of production of relativistic lepton bound states in the decays of light mesons, Sov. J. Nucl. Phys. 48 (1988), 167–171. Search in Google Scholar

[26] P. Krachkov and A. Milstein, High-energy μ+μ- electroproduction, Nucl. Phys. A 971 (2018), 71–82. 10.1016/j.nuclphysa.2018.01.013Search in Google Scholar

[27] H. Lamm and Y. Ji, Predicting and discovering true muonium (μ+μ-), EPJ Web Conf. 181 (2018), Article ID 01016. 10.1051/epjconf/201818101016Search in Google Scholar

[28] J. Moffat, Does a heavy positronium atom exist?, Phys. Rev. Lett. 35 (1975), no. 24, 1605–1606. 10.1103/PhysRevLett.35.1605Search in Google Scholar

[29] S. Mrówczyński, Interaction of elementary atoms with matter, Phys. Rev. https://arxiv.org/abs/1204.438933 (1986), no. 3, 1549–1555. 10.1103/PhysRevA.33.1549Search in Google Scholar

[30] K. Nagamine, Past, present and future of ultra-slow muons, JPS Conf. Proc. 2 (2014), Article ID 010001. 10.7566/JPSCP.2.010001Search in Google Scholar

[31] L. Nemenov, Atomic decays of elementary particles, Yad. Fiz. 15 (1972), 1047–1050. Search in Google Scholar

[32] B. S. Popov and H. M. Srivastava, Linearization of a product of two polynomials of different orthogonal systems, Facta Univ. Ser. Math. Inform. (2003), no. 18, 1–8. Search in Google Scholar

[33] A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, Integrals and Series. Special Functions, “Nauka”, Moscow, 1983. Search in Google Scholar

[34] C. S. Ríos and J. S. Silva, An implementation of atomic form factors, Comp. Phys. Commun. 151 (2003), no. 1, 79–88. 10.1016/S0010-4655(02)00687-2Search in Google Scholar

[35] K. Sakimoto, Theoretical study of true-muonium μ+μ- formation in muon collision processes μ-+μ+e- and μ++pμ-, Eur. Phys. J. D 69 (2015), 10.1140/epjd/e2015-60427-6276. 10.1140/epjd/e2015-60427-6276Search in Google Scholar

[36] O. Voskresenskaya, A density-matrix kinetic equation describing the passage of fast atomic systems through matter, J. Phys. B At. Mol. Opt. Phys. 36 (2003), no. 15, 3293–3302. 10.1088/0953-4075/36/15/310Search in Google Scholar

[37] G. M. Yu and Y. D. Li, Photoproduction of large transverse momentum dimuonium μ+μ- in relativistic heavy ion collisions, Chin. Phys. Lett. 30 (2013), no. 1, Article ID 011201. Search in Google Scholar

Received: 2018-05-23
Revised: 2019-01-31
Accepted: 2019-02-20
Published Online: 2020-01-17
Published in Print: 2020-09-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/gmj-2019-2083/html
Scroll to top button