Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

C3a and C5a facilitates the metastasis of myeloma cells by activating Nrf2

Subjects

A Correction to this article was published on 05 July 2021

This article has been updated

Abstract

Multiple myeloma (MM) is still an incurable hematological malignancy, with even poorer prognosis in MM patients with distant invasion. The present study was designed to explore the effects of C3a and C5a on the migration, invasion, and adhesion of MM tumor cells and to investigate the underlying mechanisms. As a result, the levels of C3a and C5a in plasma of MM patients were significantly higher than those of healthy donors. Consistently, the expression of C3a and C5a receptors on myeloma cells of MM patients was also significantly higher than that on sorted plasma cells of normal donors. C3a and C5a have been confirmed to increase the migration, invasion and adhesion of MM cell lines by activating the MEK/ERK pathway and increasing the nuclear transfer of Nrf2 in vitro. Moreover, the MM cell line U266 with Nrf2 downregulation was incubated with C3a and C5a, followed by injection into the tail vein of NOD-SCID mice. We found that Nrf2 downregulation attenuated the migration of anaphylatoxin C3a and C5a to MM tumor cells in bone marrow, liver and lung in vivo. In conclusion, our results indicate that activation of the complement cascade in MM patients may contribute to the migration, invasion and adhesion of MM cells, and this type of tumor cells dissemination in MM is, at least partially, regulated by Nrf2. Thereby, complement suppression or Nrf2 downregulation might offer a novel therapeutic opportunity for MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: C3a/C5a concentration in MM patients and the expression of C3a/C5a receptors on cells from MM patients.
Fig. 2: Effects of C3 and C5 cleavage fragments on the migration, invasion and adhesion of human MM cells.
Fig. 3: C3 and C5 cleavage fragments increased the expression of phosphorylated MEK1/MEK2 and upregulated the nuclear expression of Nrf2.
Fig. 4: Inhibition of MEK1/MEK2 or downregulation of Nrf2 suppresses invasion and adhesion of MM cells.
Fig. 5: C3 and C5 cleavage fragments facilitated the spread of human MM cells in vivo, while Nrf2 downregulation inhibited the metastasis of leukemic cells in vivo.
Fig. 6: Mechanism diagram.

Similar content being viewed by others

Change history

References

  1. Kyle RA, Rajkumar SV. Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia. 2009;23:3–9.

    Article  CAS  PubMed  Google Scholar 

  2. Bladé J, Fernández De Larrea C, Rosiñol L, Cibeira MT, Jiménez R, Powles R. Soft-tissue plasmacytomas in multiple myeloma: incidence, mechanisms of extramedullary spread, and treatment approach. J Clin Oncol. 2011;29:3805–12.

    Article  PubMed  Google Scholar 

  3. Usmani SZ, Heuck C, Mitchell A, Szymonifka J, Nair B, Hoering A, et al. Extramedullary disease portends poor prognosis in multiple myeloma and is over-represented in high-risk disease even in the era of novel agents. Haematologica. 2012;97:1761–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Adamiak M, Poniewierska-Baran A, Borkowska S, Schneider G, Abdelbaset-Ismail A, Suszynska M, et al. Evidence that a lipolytic enzyme-hematopoietic-specific phospholipase C-β2-promotes mobilization of hematopoietic stem cells by decreasing their lipid raft-mediated bone marrow retention and increasing the promobilizing effects of granulocytes. Leukemia. 2016;30:919–28.

    Article  CAS  PubMed  Google Scholar 

  5. Imamura T, Yamamoto-Ibusuki M, Sueta A, Kubo T, Irie A, Kikuchi K, et al. Influence of the C5a-C5a receptor system on breast cancer progression and patient prognosis. Breast Cancer (Tokyo, Jpn). 2016;23:876–85.

    Article  Google Scholar 

  6. Kim KB, Yi JS, Nguyen N, Lee JH, Kwon YC, Ahn BY, et al. Cell-surface receptor for complement component C1q (gC1qR) is a key regulator for lamellipodia formation and cancer metastasis. The. J Biol Chem. 2011;286:23093–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Corrales L, Ajona D, Rafail S, Lasarte JJ, Riezu-Boj JI, Lambris JD, et al. Anaphylatoxin C5a creates a favorable microenvironment for lung cancer progression. J Immunol. 2012;189:4674–83.

    Article  CAS  PubMed  Google Scholar 

  8. Cai K, Wan Y, Wang Z, Wang Y, Zhao X, Bao X. C5a promotes the proliferation of human nasopharyngeal carcinoma cells through PCAF-mediated STAT3 acetylation. Oncol Rep. 2014;32:2260–6.

    Article  CAS  PubMed  Google Scholar 

  9. Yoshihiro M, Yoshiaki K, Yoshihiro W, Junji Y, Masatoshi E. C5aR is frequently expressed in metastatic renal cell carcinoma and plays a crucial role in cell invasion via the ERK and PI3 kinase pathways. Oncol Rep. 2015;33:1844–50.

  10. Nunez-Cruz S, Gimotty PA, Guerra MW, Connolly DC, Wu Y-Q, Deangelis RA, et al. Genetic and pharmacologic inhibition of complement impairs endothelial cell function and ablates ovarian cancer neovascularization. Neoplasia. 2012;14:994–1004.

  11. Piao C, Cai L, Qiu S, Jia L, Song W, Du J. Complement 5a enhances hepatic metastases of colon cancer via monocyte chemoattractant protein-1-mediated inflammatory cell infiltration. J Biol Chem. 2015;290:10667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vadrevu SK, Chintala NK, Sharma SK, Sharma P, Cleveland C, Riediger L, et al. Complement c5a receptor facilitates cancer metastasis by altering T-cell responses in the metastatic niche. Cancer Res. 2014;74:3454–65.

    Article  CAS  PubMed  Google Scholar 

  13. Nitta H, Wada Y, Kawano Y, Murakami Y, Irie A, Taniguchi K, et al. Enhancement of human cancer cell motility and invasiveness by anaphylatoxin C5a via aberrantly expressed C5a receptor (CD88). Clin Cancer Res. 2013;19:2004–13.

    Article  CAS  PubMed  Google Scholar 

  14. Klos A, Tenner AJ, Johswich KO, Ager RR, Reis ES, Köhl J. The role of the anaphylatoxins in health and disease. Mol Immunol. 2009;46:2753–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wysoczynski M, Reca R, Lee H, Wu W, Ratajczak J, Ratajczak MZ. Defective engraftment of C3aR-/- hematopoietic stem progenitor cells shows a novel role of the C3a-C3aR axis in bone marrow homing. Leukemia. 2009;23:1455–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reca R, Mastellos D, Majka M, Marquez L, Ratajczak MZ. Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood. 2003;101:3784–93.

    Article  CAS  PubMed  Google Scholar 

  17. Ratajczak J, Reca R, Kucia M, Majka M, Allendorf DJ, Baran J, et al. Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood. 2004;103:2071–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ratajczak MZ, Reca R, Wysoczynski M, Kucia M, Baran JT, Allendorf DJ, et al. Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia. 2004;18:1482–90.

    Article  CAS  PubMed  Google Scholar 

  19. Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013;27:2179–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signaling cascades and transcriptional regulation. Gene. 2013;513:1–13.

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, Kondo N, Cano M, Ebrahimi K, Yoshida T, Barnett BP, et al. Nrf2 signaling modulates cigarette smoke-induced complement activation in retinal pigmented epithelial cells. Free Radic Biol Med. 2014;70:155–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Riquelme SA, Carreño LeandroJ, Espinoza JA, Mackern-Oberti JP, Alvarez-Lobos MM, Riedel CA, et al. Modulation of antigen processing by haem-oxygenase 1. Implications on inflammation and tolerance. Immunology. 2016;149:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wysoczynski M, Ratajczak J, Pedziwiatr D, Rokosh G, Bolli R, Ratajczak MZ. Identification of heme oxygenase 1 (HO-1) as a novel negative regulator of mobilization of hematopoietic stem/progenitor cells. Stem Cell Rev Rep. 2015;11:110–8.

    Article  CAS  PubMed  Google Scholar 

  24. Draube A, Pfister R, Vockerodt M, Schuster S, Kube D, Diehl V, et al. Immunomagnetic enrichment of CD138 positive cells from weakly infiltrated myeloma patient samples enables the determination of the tumor clone specific Ig H rearrangement. Ann Hematol. 2001;80:83–89.

    Article  CAS  PubMed  Google Scholar 

  25. Abdelbaset-Ismail A, Borkowska-Rzeszotek S, Kubis E, Bujko K, Brzeźniakiewicz-Janus K, Bolkun L, et al. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1. Leukemia. 2017;31:446–58.

    Article  CAS  PubMed  Google Scholar 

  26. Ouyang Q, Zhang L, Jiang Y, Ni X, Chen S, Ye F, et al. The membrane complement regulatory protein CD59 promotes tumor growth and predicts poor prognosis in breast cancer. Int J Oncol. 2016;48:2015–24.

    Article  CAS  PubMed  Google Scholar 

  27. Subbotin V, Fiksel G. Modeling multi-needle injection into solid tumor. Am J Cancer Res. 2019;9:2209–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Allagui F, Achard C, Panterne C, Combredet C, Labarrière N, Dréno B, et al. Modulation of the type I interferon response defines the sensitivity of human melanoma cells to oncolytic measles virus. Curr Gene Ther. 2017;16:419–28.

    Article  PubMed  Google Scholar 

  29. Zhang C, Wang HJ, Bao QC, Wang L, Guo TK, Chen WL, et al. NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction. Oncotarget. 2016;7:73593–606.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Renaud CO, Ziros PG, Chartoumpekis DV, Bongiovanni M, Sykiotis GP. Keap1/ Nrf2 signaling: a new player in thyroid pathophysiology and thyroid cancer. Front Endocrinol. 2019;10:510.

    Article  Google Scholar 

  31. Pan H, Wang H, Zhu L, Mao L, Qiao L, Su X. The role of Nrf2 in migration and invasion of human glioma cell U251. World Neurosurg. 2013;80:363–70.

    Article  PubMed  Google Scholar 

  32. Shen H, Yang Y, Xia S, Rao B, Zhang J, Wang J. Blockage of Nrf2 suppresses the migration and invasion of esophageal squamous cell carcinoma cells in hypoxic microenvironment. Diseases of the esophagus: official journal of the International Society for. Dis Esophagus. 2014;27:685–92.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang M, Zhang C, Zhang L, Yang Q, Zhou S, Wen Q, et al. Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human hepatocellular carcinoma. BMC Cancer. 2015;15:531.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lanfranca MP, Zhang Y, Girgis A, Kasselman S, Lazarus J, Kryczek I, et al. Interleukin 22 signaling regulates acinar cell plasticity to promote pancreatic tumor development in mice. Gastroenterology. 2020;158:1417–.e11.

    Article  Google Scholar 

  35. Van Lookeren Campagne M, Wiesmann C, Brown EJ. Macrophage complement receptors and pathogen clearance. Cell Microbiol. 2007;9:2095–102.

    Article  PubMed  Google Scholar 

  36. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11:785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hammad A, Namani A, Elshaer M, Wang XJ, Tang X. “NRF2 addiction” in lung cancer cells and its impact on cancer therapy. Cancer Lett. 2019;467:40–9.

    Article  CAS  PubMed  Google Scholar 

  38. Kurian N, Cohen TS, Öberg L, De Zan E, Skogberg G, Vollmer S, et al. Dual role for A MEK inhibitor as a modulator of inflammation and host defense mechanisms with potential therapeutic application In COPD. Int J Chronic Obstr Pulm Dis. 2019;14:2611–24.

    Article  CAS  Google Scholar 

  39. Lenkiewicz A, Bujko K, Brzezniakiewicz-Janus K, Xu B, Ratajczak MZ. The complement cascade as a mediator of human malignant hematopoietic cell trafficking. Front Immunol. 2019;10:1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signaling pathway and tumorigenesis. Exp Therapeutic Med. 2020;19:1997–2007.

    Google Scholar 

Download references

Acknowledgements

The authors thank Hematopoietic Stem Cell Laboratory of Guizhou Medical University for providing the clinical samples.

Funding

This study was supported by the grants from the National Natural Science Foundation of China (81960032,81960357,81701958) and Translational Research Grant of NCRCH (2020ZKPB03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Depei Wu or Jishi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Kuang, X., Lu, T. et al. C3a and C5a facilitates the metastasis of myeloma cells by activating Nrf2. Cancer Gene Ther 28, 265–278 (2021). https://doi.org/10.1038/s41417-020-00217-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-00217-0

This article is cited by

Search

Quick links