Skip to main content
Log in

Research and Operational Development of Numerical Weather Prediction in China

  • Advances in Meteorological Research and Operation Since the Founding of The People’s Republic of China
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Numerical weather prediction (NWP) is a core technology in weather forecast and disaster mitigation. China’s NWP research and operational applications have been attached great importance by the meteorological community. Fundamental achievements have been made in the theories, methods, and NWP model development in China, which are of certain international impacts. In this paper, the scientific and technological progress of NWP in China since 1949 is summarized. The current status and recent progress of the domestically developed NWP system—GRAPES (Global/Regional Assimilation and PrEdiction System) are presented. Through independent research and development in the past 10 years, the operational GRAPES system has been established, which includes both regional and global deterministic and ensemble prediction models, with resolutions of 3–10 km for regional and 25–50 km for global forecasts. Major improvements include establishment of a new non-hydrostatic dynamic core, setup of four-dimensional variational data assimilation, and development of associated satellite application. As members of the GRAPES system, prediction models for atmospheric chemistry and air pollution, tropical cyclones, and ocean waves have also been developed and put into operational use. The GRAPES system has been an important milestone in NWP science and technology in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, A., 1966: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys., 1, 119–143, doi: https://doi.org/10.1016/0021-9991(66)90015-5.

    Google Scholar 

  • Arakawa, A., 1972: Design of the UCLA general circulation model. Numerical Simulation of Weather and Climate, Technical Report No. 7, Department of Meteorology, University of California, Los Angeles, USA, 116 pp.

    Google Scholar 

  • Bannister, R. N., 2017: A review of operational methods of variational and ensemble-variational data assimilation. Quart. J. Roy. Meteor. Soc., 143, 607–633, doi: https://doi.org/10.1002/qj.2982.

    Google Scholar 

  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47–55, doi: https://doi.org/10.1038/nature14956.

    Google Scholar 

  • Benjamin, S. G., J. M. Brown, G. Brunet, et al., 2019: 100 years of progress in forecasting and NWP applications. Meteor. Monogr., 59, 13.1–13.67, doi: https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1. In A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, G. McFarquhar, Ed., American Meteorological Society.

    Google Scholar 

  • Bermejo, R., and A. Staniforth, 1992: The conversion of semi-Lagrangian advection schemes to quasi-monotone schemes. Mon. Wea. Rev., 120, 2622–2632, doi: https://doi.org/10.1175/1520-0493(1992)120<2622:TCOSLA>2.0.CO;2.

    Google Scholar 

  • Bermejo, R., and J. Conde, 2002: A conservative quasi-monotone semi-Lagrangian scheme. Mon. Wea. Rev., 130, 423–130, doi: https://doi.org/10.1175/1520-0493(2002)130<0423:ACQMSL>2.0.CO;2.

    Google Scholar 

  • Blumen, W., and W. M. Washington, 1973: Atmospheric dynamics and numerical weather prediction in the People’s Republic of China 1949–1966. Bull. Amer. Meteor. Soc., 54, 502–518, doi: https://doi.org/10.1175/1520-0477(1973)054<0502:ADANWP>2.0.CO;2.

    Google Scholar 

  • Bonavita, M., Y. Trémolet, E. Holm, et al., 2017: A Strategy for Data Assimilation. Technical Memorandum No. 800, European Centre for Medium Range Weather Forecasts, Reading, UK, 44 pp.

    Google Scholar 

  • Chao, J. P., and X. P. Zhou, 1964: Cumulus Dynamics. Science Press, Beijing, 116 pp. (in Chinese)

    Google Scholar 

  • Chen, C. G., X. L. Li, X. S. Shen, et al., 2014: Global shallow water models based on multi-moment constrained finite volume method and three quasi-uniform spherical grids. J. Comput. Phys., 271, 191–223, doi: https://doi.org/10.1016/j.jcp.2013.10.026.

    Google Scholar 

  • Chen, C.-S., L.-R. Ji, J.-B. Chen, et al., 2007: An application of JFNK method to solving the 1D nonlinear advection equation in fully implicit scheme. Chinese J. Atmos. Sci., 31, 963–972, doi: https://doi.org/10.3878/j.issn.1006-9895.2007.05.19.

    Google Scholar 

  • Chen, D. H., and J. S. Xue, 2004: An overview on recent progress of the operational numerical weather prediction models. Acta Meteor. Sinica, 62, 623–633, doi: https://doi.org/10.11676/qxxb2004.061. (in Chinese)

    Google Scholar 

  • Chen, X. S., R. Z. Liu, Y. F. Xu, et al., 1957: A test of two-parameter model for a situation with a strong front. Acta Meteor. Sinica, 28, 275–281, doi: https://doi.org/10.11676/qxxb1957.023.

    Google Scholar 

  • Chou, J. F., 1974: A problem of using past data in numerical weather forecasting. Scientia Sinica, 17, 635–644. (in Chinese)

    Google Scholar 

  • Côté, J., S. Gravel, A. Méthot, et al., 1998: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 1373–1395, doi: https://doi.org/10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2.

    Google Scholar 

  • Di, D., J. Li, W. Han, et al., 2018: Enhancing the fast radiative transfer model for FengYun-4 GIIRS by using local training profiles. J. Geophys. Res. Atmos., 123, 12,583–12,596, doi: https://doi.org/10.1029/2018JD029089.

    Google Scholar 

  • Diamantakis, M., and J. Flemming, 2014: Global mass fixer algorithms for conservative tracer transport in the ECMWF model. Geosci. Model Dev., 7, 965–979, doi: https://doi.org/10.5194/gmd-7-965-2014.

    Google Scholar 

  • Eyre, J., 2007: Progress achieved on assimilation of satellite data in NWP over the last 30 years. Annual Seminar on Recent Developments in the Use of Satellite Observations in Numerical Weather Prediction, ECMWF, UK. Available at https://www.ecmwf.int/en/leammg/workshops-and-seminars/past-workshops/2007-annual-seminar. Accessed on 24 July 2020.

    Google Scholar 

  • Gospodinov, I. G., V. G. Spiridonov, and J.-F. Geleyn, 2001: Second-order accuracy of two-time-level semi-Lagrangian schemes. Quart. J. Roy. Meteor. Soc., 127, 1017–1033, doi: https://doi.org/10.1002/qj.49712757317.

    Google Scholar 

  • Gu, Z.-C., 1958a: On the equivalency of formulations of weather forecasting as an initial value problem and as an “evolution” problem. Acta Meteor. Sinica, 29, 93–98, doi: https://doi.org/10.11676/qxxb1958.011. (in Chinese)

    Google Scholar 

  • Gu, Z.-C., 1958b: On the utilization of past data in numerical weather forecasting. Acta Meteor. Sinica, 29, 176–184, doi: https://doi.org/10.11676/qxxb1958.019. (in Chinese)

    Google Scholar 

  • Gu, Z.-C., 1959: Achievement of numerical prediction in China. Acta Meteor. Sinica, 30, 237–242, doi: https://doi.org/10.11676/qxxb1959.033. (in Chinese)

    Google Scholar 

  • Gu, Z.-C., J. P. Chao, and C. Jü, 1957: A test for 24 and 48-h numerical forecasting with a quasi-geostophic two-parameter model. Acta Meteor. Sinica, 28, 41–62, doi: https://doi.org/10.11766/qxxb1957.004. (in Chinese)

    Google Scholar 

  • Guo, X. R., Y. L. Zhang, Z. H. Yan, et al., 1995: The limited area analysis and forecast system and its operational application. Acta Meteor. Sinica, 53, 306–318, doi: https://doi.org/10.11676/qxxb1995.036. (in Chinese)

    Google Scholar 

  • Gustafsson, N., T. Janjić, C. Schraff, et al., 2018: Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. Quart. J. Roy. Meteor. Soc., 144, 1218–1256, doi: https://doi.org/10.1002/qj.3179.

    Google Scholar 

  • Han, W., 2014: Constrained variational bias correction for satellite radiance assimilation. Proc. 19th International TOVS Study Conference, Jeju Island, South Korea. Available at https://cimss.ssec.wisc.edu/itwg/itsc/itsc19/index.html. Accessed on 24 July 2020.

  • Han, W., and N. Bormann, 2016: Constrained Adaptive Bias Correction for Satellite Radiance Assimilation in the ECMWF 4D-Var System. ECMWF Technical Memorandum, 783, European Centre for Medium Range Weather Forecasts, Reading, UK, 28 pp.

    Google Scholar 

  • Han, W., J. S. Xue, J. M. Xu, et al., 2006: Assimilation of FY2C AMV in GRAPES. Proc. Eighth International Winds Workshop, Beijing, China. Available at https://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P47_S2_04_HAN_V&RevisionSelectionMethod=LatestReleased&Ren. Accessed on 29 July 2020.

  • Han, W., X. S. Shen, Z. R. Zhuang, et al., 2010: The use of satellite data in Chinese new GFS. ITSC-XVII Conference, Monterey, CA, USA. Available at https://cimss.ssec.wisc.edu/itwg/itsc/itsc17/. Accessed on 24 July 2020.

  • Hu, Z. J., and G. Y. Zou, 1992: Atmospheric non-hydrostatic model and elastic adaptation. Sci. China, 35, 463–175. (in Chinese)

    Google Scholar 

  • Huang, L. P., D. H. Chen, L. T. Deng, et al., 2017: Main technical improvements of GRAPES_Meso V4.0 and verification. J. Appl. Meteor. Sci., 28, 25–37. (in Chinese)

    Google Scholar 

  • Huang, W., J.-W. Bao, X. Zhang, et al., 2018: Comparison of the vertical distributions of cloud properties from idealized extratropical deep convection simulations using various horizontal resolutions. Mon. Wea. Rev., 146, 833–851, doi: https://doi.org/10.1175/MWR-D-17-0162.1.

    Google Scholar 

  • Ji, L. R., 2011: Some highlights and their implication in the early progress of numerical weather prediction—a review. Adv. Meteor. Sci. Technol., 1, 40–43. (in Chinese)

    Google Scholar 

  • Ji, L.-R., J.-B. Chen, D.-M. Zhang, et al., 2005: Review of some numerical aspects of the dynamic framework of NWP model. Chinese J. Atmos. Sci., 29, 120–130, doi: https://doi.org/10.3878/j.issn.1006-9895.2005.01.14. (in Chinese)

    Google Scholar 

  • Ji, Z. Z., 1981: A case of nonlinear instability in Arakawa scheme. Acta Meteor. Sinica, 39, 237–239, doi: https://doi.org/10.11676/qxxb1981.025. (in Chinese)

    Google Scholar 

  • Ji, Z. Z., and Q. C. Zeng, 1982: The construction and application of difference schemes of evolution equations. Scientia Atmos. Sinica, 6, 88–94, doi: https://doi.org/10.3878/j.issn.1006-9895.1982.01.13. (in Chinese)

    Google Scholar 

  • Ji, Z. Z., and B. Wang, 1991: Further discussion on the construction and application of difference scheme of evolution equations. Scientia Atmos. Sinica, 15, 1–10, doi: https://doi.org/10.3878/j.issn.1006-9895.1991.02.01. (in Chinese)

    Google Scholar 

  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge, UK, 341 pp, doi: https://doi.org/10.1017/CBO9780511802270.

    Google Scholar 

  • Kwon, I.-H., S. English, W. Bell, et al., 2018: Assessment of progress and status of data assimilation in numerical weather prediction. Bull. Amer. Meteor. Soc., 99, ES75–ES79, doi: https://doi.org/10.1175/BAMS-D-17-0266.1.

    Google Scholar 

  • Lauritzen, P. H., R. D. Nair, and P. A. Ullrich, 2010: A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. J. Comput. Phys., 229, 1401–1424, doi: https://doi.org/10.1016/j.jcp.2009.10.036.

    Google Scholar 

  • Li, J., and X. L. Zou, 2014: Impact of FY-3A MWTS radiances on prediction in GRAPES with comparison of two quality control schemes. Front. Earth Sci., 8, 251–263, doi: https://doi.org/10.1007/s11707-014-0405-3.

    Google Scholar 

  • Li, J., and G. Q. Liu, 2016: Direct assimilation of Chinese FY-3C microwave temperature sounder-2 radiances in the global GRAPES system. Atmos. Meas. Tech., 9, 3095–3113, doi: https://doi.org/10.5194/amt-9-3095-2016.

    Google Scholar 

  • Li, X. L., and Y. Z. Liu, 2019: The improvement of GRAPES global extratropical singular vectors and experimental study. Acta Meteor. Sinica, 77, 552–562, doi: https://doi.org/10.1167/qxxb2019.020. (in Chinese)

    Google Scholar 

  • Li, X. L., C. G. Chen, X. S. Shen, et al., 2013: A multimoment constrained finite-volume model for nonhydrostatic atmospheric dynamics. Mon. Wea. Rev., 141, 1216–1240, doi: https://doi.org/10.1175/MWR-D-12-00144.1.

    Google Scholar 

  • Li, X. L., J. Chen, Y. Z. Liu, et al., 2019: Representations of initial uncertainty and model uncertainty of GRAPES global ensemble forecasting. Trans. Atmos. Sci., 42, 348–359, doi: https://doi.org/10.13878/j.cnki.dqkxxb.20190318001. (in Chinese)

    Google Scholar 

  • Li, Z. C., 2010: Review of history of NWP operation. Interview by China Meteorological News. Available online at http://2011.cma.gov.cn/ztbd/2010zt/2010030501/2010030502/201003/t20100317_62254.html. Accessed on 24 July 2020. (in Chinese)

  • Liao, T.-H., 1956: A simplified graphical method for numerical prediction with a two-parameter model of the atmosphere. Acta Meteor. Sinica, 27, 153–166, doi: https://doi.org/10.11676/qxxb1956.013. (in Chinese)

    Google Scholar 

  • Liu, Y., and J. S. Xue, 2014: Assimilation of global navigation satellite radio occultation observations in GRAPES: Operational implementation. J. Meteor. Res., 28, 1061–1074, doi: https://doi.org/10.1007/s13351-014-4028-0.

    Google Scholar 

  • Liu, Y. Z., X. S. Shen, and X. L. Li, 2013: Research on the singular vector perturbation of the GRAPES global model based on the total energy norm. Acta Meteor. Sinica, 71, 517–526, doi: https://doi.org/10.11676/qxxb2013.043. (in Chinese)

    Google Scholar 

  • Liu, Y. Z., L. Zhang, and Z. H. Lian, 2018: Conjugate gradient algorithm in the four-dimensional variational data assimilation system in GRAPES. J. Meteor. Res., 32, 974–984, doi: https://doi.org/10.1007/s13351-018-8053-2.

    Google Scholar 

  • Ma, Z. S., Q. J. Liu, C. F. Zhao, et al., 2018: Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J. Adv. Model. Earth Syst., 10, 652–667, doi: https://doi.org/10.1002/2017MS001234.

    Google Scholar 

  • Magnusson, L., and E. Kallen, 2013: Factors influencing skill improvements in the ECMWF forecasting system. Mon. Wea. Rev., 141, 3142–3152, doi: https://doi.org/10.1175/MWR-D-12-00318.1.

    Google Scholar 

  • Mengaldo, G., A. Wyszogrodzki, M. Diamantakis, et al., 2019: Current and emerging time-integration strategies in global numerical weather and climate prediction. Arch. Comput. Methods Eng., 26, 663–684, doi: https://doi.org/10.1007/s11831-018-9261-8.

    Google Scholar 

  • Mesinger, F., 1984: A blocking technique for representation of mountains in atmospheric models. Riv. Meteor. Aeronautica, 44, 195–202.

    Google Scholar 

  • Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Process. Geophys., 10, 493–501, doi: https://doi.org/10.5194/npg-10-493-2003.

    Google Scholar 

  • Mu, M., W. Duan, Q. Wang, et al., 2010: An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlinear Process. Geophys., 17, 211–220, doi: https://doi.org/10.5194/npg-17-211-2010.

    Google Scholar 

  • Numerical Prediction Team of the Central Meteorological Bureau of China, 1965: Operational tests of numerical prediction in China. Chinese Sci. Bull., 16, 131–133, doi: https://doi.org/10.1360/csb1965-10-2-131. (in Chinese)

    Google Scholar 

  • Numerical Prediction Research Team, 1975: Progress in atmospheric general circulation numerical experiment in recent years. Advances in Modern Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Ed., Science Press, Beijing, 1–45.

    Google Scholar 

  • Peng, F., X. L. Li, J. Chen, et al., 2019: A stochastic kinetic energy backscatter scheme for model perturbations in the GRAPES global ensemble prediction system. Acta Meteor. Sinica, 77, 180–195, doi: https://doi.org/10.11676/qxxb2019.009. (in Chinese)

    Google Scholar 

  • Rabier, F., H. Järvinen, E. Klinker, et al., 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 1143–1170, doi: https://doi.org/10.1002/qj.49712656415.

    Google Scholar 

  • Ritchie, H., and M. Tanguay, 1996: A comparison of spatially averaged Eulerian and semi-Lagrangian treatments of mountains. Mon. Wea. Rev., 124, 167–181, doi: https://doi.org/10.1175/1520-0493(1996)124<0167:ACOSAE>2.0.CO;2.

    Google Scholar 

  • Robert, A., 1969: The integration of a spectral model of the atmosphere by the implicit method. Proc. WMO/IUGG International Symposium on NWP, Japan Meteorological Society, 26 November–4 December 1968, Tokyo, Japan.

  • Robert, A., T. Yee, and H. Ritchie, 1985: A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models. Mon. Wea. Rev., 113, 388–394, doi: https://doi.org/10.1175/1520-0493(1985)113<0388:ASLASI>2.0.CO;2.

    Google Scholar 

  • Shen, R. G., and W. F. Mu, 1965: Preliminary experience in utilizing the 48-h 500 hPa NWP forecast graph in Central Meteorological Bureau. Acta Meteor. Sinica, 37, 383–398, doi: https://doi.org/10.11676/qxxb1965.045. (in Chinese)

    Google Scholar 

  • Shen, X. S., and J. J. Wang, 2015: Technical Report of GRAPES_GFS. Numerical Weather Prediction Center of CMA, 232 pp. (in Chinese)

  • Shen, X. S., W. Han, J. Sun, et al., 2009: Technical Report on Quasi-Operation of the GRAPES_GFS Global Numerical Prediction System. Numerical Models Innovation Base of the China Meteorological Administration. 150 pp. (in Chinese)

  • Shen, X. S., J. S. Xue, L. R. Ji, et al., 2010: Numerical prediction research. Report on Advances in Atmospheric Sciences, China Science and Technology Press, Beijing, China, 149–160.

    Google Scholar 

  • Shen, X. S., M. H. Wang, and F. Xiao, 2011: A study of the high order accuracy and positive definite conformal advection scheme in the GRAPES model I: Scientific design and idealized tests. Acta Meteor. Sinica, 69, 1–15, doi: https://doi.org/10.11676/qxxb2011.001. (in Chinese)

    Google Scholar 

  • Shen, X. S., X. J. Zhou, J. S. Xue, et al., 2013: GRAPES Numerical Prediction System for Heavy Rainfall. China Meteorological Press, Beijing, 186 pp. (in Chinese)

    Google Scholar 

  • Shen, X. S., Y. Su, J. L. Hu, et al., 2017: Development and operation transformation of GRAPES global midium-range forecast. J. Appl. Meteor. Sci., 28, 1–10. (in Chinese)

    Google Scholar 

  • Simmons, A. J., and J. B. Chen, 1991: The calculation of geopotential and the pressure gradient in the ECMWF atmospheric model: Influence on the simulation of the polar atmosphere and on temperature analyses. Quart. J. Roy. Meteor. Soc., 117, 29–58, doi: https://doi.org/10.1002/qj.49711749703.

    Google Scholar 

  • Simmons, A. J., and C. Temperton, 1997: Stability of a two-time-level semi-implicit integration scheme for gravity wave motion. Mon. Wea. Rev., 125, 600–615, doi: https://doi.org/10.1175/1520-0493(1997)125<0600:SOATTL>2.0.CO;2.

    Google Scholar 

  • Smolarkiewicz, P. K., J. Szmelter, and F. Xiao, 2016: Simulation of all-scale atmospheric dynamics on unstructured meshes. J. Comput. Phys., 322, 267–287, doi: https://doi.org/10.1016/j.jcp.2016.06.048.

    Google Scholar 

  • Su, C. X., 1958: The turbulence in the surface layer of the stratified atmosphere. Acta Meteor. Sinica, 29, 73–82, doi: https://doi.org/10.11676/qxxb1958.009. (in Chinese)

    Google Scholar 

  • Su, C. X., 1959: On the summary of basic laws in near surface turbulent transfer. Acta Meteor. Sinica, 30, 114–118, doi: https://doi.org/10.11676/qxxb1959.015. (in Chinese)

    Google Scholar 

  • Su, Y., X. S. Shen, X. D. Peng, et al., 2013: Application of PRM scalar advection scheme in GRAPES global forecast system. Chinese J. Atmos. Sci., 37, 1309–1325, doi: https://doi.org/10.3878/j.issn.1006-9895.2013.12164. (in Chinese)

    Google Scholar 

  • Su, Y., X. S. Shen, Z. T. Chen, et al., 2018: A study on the three-dimensional reference atmosphere in GRAPES_GFS I: Theoretical design and ideal test. Acta Meteor. Sinica, 76, 241–254, doi: https://doi.org/10.11676/qxxb2017.097. (in Chinese)

    Google Scholar 

  • Tao, S. Y., S. X. Zhao, X. P. Zhou, et al., 2003: The research progress of the synoptic meteorology and synoptic forecast. Chinese J. Atmos. Sci., 27, 451–467, doi: https://doi.org/10.3878/j.issn.1006-9895.2003.04.03. (in Chinese)

    Google Scholar 

  • Temperton, C., M. Hortal, and A. Simmons, 2001: A two-time-level semi-Lagrangian global spectral model. Quart. J. Roy. Meteor. Soc., 127, 111–127, doi: https://doi.org/10.1002/qj.49712757107.

    Google Scholar 

  • Tian, X. J., H. Q. Zhang, X. B. Feng, et al., 2018: Nonlinear least squares En4DVar to 4DEnVar methods for data assimilation: Formulation, analysis, and preliminary evaluation. Mon. Wea. Rev., 146, 77–93, doi: https://doi.org/10.1175/MWR-D-17-0050.1.

    Google Scholar 

  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 3040–3061, doi: https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.

    Google Scholar 

  • Tu, W. M., and Y. T. Zhang, 1995: The global optimum interpolation objective analysis. Acta Meteor. Sinica, 53, 148–156, doi: https://doi.org/10.11676/qxxb1995.017. (in Chinese)

    Google Scholar 

  • Wan, X. M., W. H. Tian, W. Han, et al., 2017: The evaluation of FY-2E reprocessed IR AMVs in GRAPES. Meteor. Mon., 43, 1–10, doi: https://doi.org/10.7519/j.issn.1000-0526.2017.01.001. (in Chinese)

    Google Scholar 

  • Wan, X. M., W. Han, W. H. Tian, et al., 2018: The application of intensive FY-2G AMVs in GRAPES_RAFS. Plateau Meteor., 37, 1083–1093. (in Chinese)

    Google Scholar 

  • Wang, B., and Z. Z. Ji, 1990: The construction and preliminary test of the explicit complete square conservative difference schemes. Chinese Sci. Bull., 35, 1724–1728. (in Chinese)

    Google Scholar 

  • Wang, B., H. Wan, Z. Z. Ji, et al., 2004: Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Sci. China Ser. A Math., 47, 4–21.

    Google Scholar 

  • Wang, B., J. J. Liu, S. D. Wang, et al., 2010: An economical approach to four-dimensional variational data assimilation. Adv. Atmos. Sci., 27, 715–727, doi: https://doi.org/10.1007/s00376-009-9122-3.

    Google Scholar 

  • Wang, D. H., and X. P. Zhou, 1996: Damping and compressing techniques of sound waves in nonhydrostatic atmospheric numerical model. J. Trop. Meteor., 12, 265–271. (in Chinese)

    Google Scholar 

  • Wang, H., 2017: Assimilation and application of geostationary satellite emissivity data in GRAPES global prediction system. Master dissertation, Chengdu University of Information Engineering, Chengdu, 57 pp. (in Chinese)

    Google Scholar 

  • Wang, J. C., J. D. Gong, and R. C. Wang, 2016: Estimation of background error for brightness temperature in GRAPES 3DVar and its application in radiance data background quality control. Acta Meteor. Sinica, 74, 397–406, doi: https://doi.org/10.11676/qxxb2016.026. (in Chinese)

    Google Scholar 

  • Wang, J. Z., J. Chen, J. Du, et al., 2018: Sensitivity of ensemble forecast verification to model bias. Mon. Wea. Rev., 146, 781–796, doi: https://doi.org/10.1175/MWR-D-17-0223.1.

    Google Scholar 

  • Wang, R. C., Z. Zhuang, Z. Xu, et al., 2018: Development of Km-Scale 3DVAR for GRAPES-Meso. Technical documentation for the 4th Scientific Steering Committee Meeting, Numerical Weather Prediction Center of CMA, 21 pp.

  • Wu, Y., Z. F. Xu, R. C. Wang, et al., 2018: Improvement of GRAPES_3Dvar with a new multi-scale filtering and its application in heavy rain forecasting. Meteor. Mon., 44, 621–633, doi: https://doi.org/10.7519/j.issn.1000-0526.2018.05.003. (in Chinese)

    Google Scholar 

  • Xu, E. H., 1959: Research on dynamical meteorology in China during the last 10 years. Acta Meteor. Sinica, 30, 243–250, doi: https://doi.org/10.11676/qxxb1959.034. (in Chinese)

    Google Scholar 

  • Xu, K.-M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53, 3084–3102, doi: https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2.

    Google Scholar 

  • Xu, Z. Z., J. Chen, Y. Wang, et al., 2019: Sensitivity experiments of a stochastically perturbed parameterizations (SPP) scheme for mesoscale precipitation ensemble prediction. Acta Meteor. Sinica, 77, 849–868, doi: https://doi.org/10.11676/qxxb2019.039. (in Chinese)

    Google Scholar 

  • Xue, J. S., and D. H. Chen, 2008: Scientific Design and Application of GRAPES Numerical Prediction System. Science Press, Beijing, 383 pp. (in Chinese)

    Google Scholar 

  • Xue, J. S., K. L. Wang, Z. M. Wang, et al., 1988: Test of a tropical limited area numerical prediction model including effect of real topography. Adv. Atmos. Sci., 5, 1–13, doi: https://doi.org/10.1007/BF02657341.

    Google Scholar 

  • Xue, J. S., C. J. Li, and Z. M. Wang, 1992: Initialization of limited area model based on the principle of nonlinear normal mode initialization. Scientia Atmos. Sinica, 16, 686–697, doi: https://doi.org/10.3878/j.issn.1006-9895.1992.06.06. (in Chinese)

    Google Scholar 

  • Xue, J. S., Y. Liu, L. Zhang, et al., 2012: Analysis of the GRAPES Global 3DVar System at Model Space. Internal Documentation of Numerical Weather Prediction Center of CMA, 105 pp. (in Chinese)

  • Yan, H., 1987: The design of a nested fine-mesh model over the complex topography. Part one: Basic structure of the numerical model. Plateau Meteor., 6, 1–63. (in Chinese)

    Google Scholar 

  • Yang, J., Z. Q. Zhang, C. Y. Wei, et al., 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Amer. Meteor. Soc., 98, 1637–1658, doi: https://doi.org/10.1175/BAMS-D-16-0065.1.

    Google Scholar 

  • Yang, M. J., J. D. Gong, R. C. Wang, et al., 2019: A comparative study of two blending methods to introduce large scale information into GRAPES mesoscale analysis. J. Trop. Meteor., 25, 227–244.

    Google Scholar 

  • Ye, D. Z., 1963: Collected Papers of Dynamic Meteorology (2). Science Press, Beijing, 133–152. (in Chinese)

    Google Scholar 

  • Yin, R. Y., W. Han, Z. Q. Gao, et al., 2019: A study on longwave infrared channel selection based on estimates of background errors and observation errors in the detection area of FY-4A. Acta Meteor. Sinica, 77, 898–910, doi: https://doi.org/10.11676/qxxb2019.051. (in Chinese)

    Google Scholar 

  • Yin, R. Y., W. Han, Z. Q. Gao, et al., 2020: The evaluation of FY4A’s Geostationary Interferometric Infrared Sounder (GIIRS) long-wave temperature sounding channels using the GRAPES global 4D-Var. Quart. J. Roy. Meteor. Soc., 146, 1459–1476, doi: https://doi.org/10.1002/qj.3746.

    Google Scholar 

  • Yu, R. C., J. S. Xue, and Y. P. Xu, 2004: AREM Meso-Scale Numerical Prediction Modeling System for Heavy Rainfall. China Meteorological Press, Beijing, 233 pp. (in Chinese)

    Google Scholar 

  • Yu, R. C., Q. C. Zeng, G. K. Peng, et al., 1994: Research on “Ya-An-Tian-Lou.” Part II: Numerical trial-forecasting. Scientia Atmos. Sinica, 18, 535–551, doi: https://doi.org/10.3878/j.issn.1006-9895.1994.05.04. (in Chinese)

    Google Scholar 

  • Yuan, Y., X. L. Li, J. Chen, et al., 2016: Stochastic parameterization toward model uncertainty for the GRAPES mesoscale ensemble prediction system. Meteor. Mon., 42, 1161–1175, doi: https://doi.org/10.7519/j.issn.1000-0526.2016.10.001. (in Chinese)

    Google Scholar 

  • Zeng, Q. C., 1963a: Application of a two-layer model of full fluid dynamic and thermo-dynamic equations in the short-term weather prediction. Collected Papers of Dynamic Meteorology (2), Science Press, Beijing, 133–152.

    Google Scholar 

  • Zeng, Q. C., 1963b: Characteristic parameter and dynamic equations. Acta Meteor. Sinica, 33, 472–483, doi: https://doi.org/10.11676/qxxb1963.050. (in Chinese)

    Google Scholar 

  • Zeng, Q. C., 1963c: The adapting and developing processes in the atmosphere: (1) Physical analysis and linear theory. Acta Meteor. Sinica, 33, 163–174, doi: https://doi.org/10.11676/qxxb1963.017 (in Chinese)

    Google Scholar 

  • Zeng, Q. C., 1978: Some aspects of the computational stability. Scientia Atmos. Sinica, 2, 181–191, doi: https://doi.org/10.3878/j.issn.1006-9895.1978.03.01. (in Chinese)

    Google Scholar 

  • Zeng, Q. C., 1979: Mathematical and Physical Basis of Numerical Weather Prediction (Vol. 1). Science Press, Beijing, 543 pp. (in Chinese)

    Google Scholar 

  • Zeng, Q. C., 2013: Weather forecast—from empirical to physico-mathematical theory and super-computing system engineering. Physics, 42, 300–314. (in Chinese)

    Google Scholar 

  • Zeng, Q. C., and Z. Z. Ji, 1981: On the computational stability of evolution equations. Math. Numer. Sinica, 3, 79–86. (in Chinese)

    Google Scholar 

  • Zeng, Q. C., C. G. Yuan, X. H. Zhang, et al., 1985: A test for the difference scheme of a general circulation model. Acta Meteor. Sinica, 43, 441–449, doi: https://doi.org/10.11676/qxxb1985.056. (in Chinese)

    Google Scholar 

  • Zeng, Q. T., 1961: The application of a complete system of thermo-hydrodynamic equations to short-term weather forecast in a two-level model. Dokl. Akad. Nauk SSSR, 137, 76–78.

    Google Scholar 

  • Zerroukat, M., N. Wood, and A. Staniforth, 2004: SLICE-S: A semi-Lagrangian inherently conserving and efficient scheme for transport problems on the sphere. Quart. J. Roy. Meteor. Soc., 130, 2649–2664, doi: https://doi.org/10.1256/qj.03.200.

    Google Scholar 

  • Zerroukat, M., N. Wood, A. Staniforth, et al., 2009: An inherently mass-conserving semi-implicit semi-Lagrangian discretisation of the shallow-water equations on the sphere. Quart. J. Roy. Meteor. Soc., 135, 1104–1116, doi: https://doi.org/10.1002/qj.458.

    Google Scholar 

  • Zhang, H., J. S. Xue, G. F. Zhu, et al., 2004: Application of direct assimilation of ATOVS microwave radiances to typhoon track prediction. Adv. Atmos. Sci., 21, 283–290, doi: https://doi.org/10.1007/BF02915715.

    Google Scholar 

  • Zhang, H. B., J. Chen, X. F. Zhi, et al., 2014: Study on the application of GRAPES regional ensemble prediction system. Meteor. Mon., 40, 1076–1087, doi: https://doi.org/10.7519/jissn.1000-0526.2014.09.005. (in Chinese)

    Google Scholar 

  • Zhang, H. B., J. Chen, X. F. Zhi, et al., 2015: Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system. Adv. Atmos. Sci., 32, 1143–1155, doi: https://doi.org/10.1007/s00376-015-4232-6.

    Google Scholar 

  • Zhang, L., Y. Z. Liu, Y. Liu, et al., 2019: The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart. J. Roy. Meteor. Soc., 145, 1882–1896, doi: https://doi.org/10.1002/qj.3533.

    Google Scholar 

  • Zhang, X., J.-W. Bao, B. D. Chen, et al., 2018: A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW model. Mon. Wea. Rev., 146, 2023–2045, doi: https://doi.org/10.1175/MWR-D-17-0356.1.

    Google Scholar 

  • Zhao, J. Z., 1959: Progress of meteorological research in China in recent 10 years. Acta Meteor. Sinica, 30, 206–211, doi: https://doi.org/10.11676/qxxb1959.027. (in Chinese)

    Google Scholar 

  • Zheng, Q. L., 1980: A seven-level spectral model of primitive equations for the Northern Hemisphere. Proc. Second Meeting on Numerical Weather Prediction of China, Science Press, Beijing, 13–24.

    Google Scholar 

  • Zheng, Q. L., 1989: Northern Hemispheric seven-level primitive equation spectral model (III) and its application to the medium range numerical weather prediction. J. Appl. Meteor. Sci., 4, 1–12. (in Chinese)

    Google Scholar 

  • Zhong, Q., 1992: A general inverse formulation principle of perfect conservative scheme and its applications. Chinese J. Comput. Phys., 9, 758–764. (in Chinese)

    Google Scholar 

  • Zhong, Q., 1993: Durative, economic inversion compensation of a truth-preserved computational scheme for evolution equation. Chinese Sci. Bull., 35, 1101–1105. (in Chinese)

    Google Scholar 

  • Zhou, X. J., 1963: Statistical theory of microphysical mechanism of warm rain precipitation. Acta Meteor. Sinica, 33, 97–107, doi: https://doi.org/10.11676/qxxb1963.008. (in Chinese)

    Google Scholar 

  • Zhu, L. J., J. D. Gong, L. P. Huang, et al., 2017: Three-dimensional cloud initial field created and applied to GRAPES numerical weather prediction nowcasting. J. Appl. Meteor. Sci., 28, 38–51. (in Chinese)

    Google Scholar 

  • Zhu, Y. T., 1961: A nonlinear prediction by using a three-layer model at spherical coordinate. Acta Meteor. Sinica, 31, 216–233. (in Chinese)

    Google Scholar 

  • Zhu, Y. T., 1962: Numerical experiment of topography-induced perturbation in the baroclinic atmosphere. Acta Meteor. Sinica, 32, 37–43, doi: https://doi.org/10.11676/qxxb1962.004. (in Chinese)

    Google Scholar 

  • Zhu, Y. T., and H. B. Yin, 1987: A scheme for predicting typhoon track by using five-layer primitive equation model with nesting grids. Proc. Typhoon Meeting in 1985, China Meteorological Press, Beijing, 253–262.

    Google Scholar 

  • Zhu, Z. S., H. J. Wang, and Y. T. Zhang, 1992: Quasi-operational limited area objective analysis scheme in the National Meteorological Centre. J. Appl. Meteor. Sci., 3, 459–467. (in Chinese)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Wei Han, Yong Su, Lin Zhang, Xingliang Li, Hua Zhang, Jian Sun, Jing Chen, Yongzhu Liu, Lijuan Zhu, Ruichun Wang, Jincheng Wang, Liping Huang, Qiying Chen, Zhanshan Ma, Suhong Ma, Kan Dai, and Yu Wang for providing valuable supportng materials. Some of them (Jing Chen, Wei Han, Zhanshan Ma, Ruichun Wang, Lin Zhang, and Yong Su) took part in the writing of this article and some (Jincheng Wang, Kan Dai, Suhong Ma, and Yu Wang) contributed figures and tables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjie Wang.

Additional information

Supported by the National Key Research and Development Program of China (2017YFC1501900) and Middle- and Long-term Development Strategic Research Project of the Chinese Academy of Engineering (2019-ZCQ-06).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Wang, J., Li, Z. et al. Research and Operational Development of Numerical Weather Prediction in China. J Meteorol Res 34, 675–698 (2020). https://doi.org/10.1007/s13351-020-9847-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-020-9847-6

Key words

Navigation