Skip to main content
Log in

Adsorption and Anticorrosion Behavior of Expired Meloxicam on Mild Steel in Hydrochloric Acid Solution

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The inhibiting effect of the expired meloxicam on the corrosion of mild steel (MS) in 1 M HCl was tested by the weight loss, electrochemical frequency modulation, potentiodynamic polarization (PP) and electrochemical impedance spectroscopy techniques. The PP curves showed that this drug acts as mixed type inhibitor. This drug was adsorbed chemically on the MS surface following the Temkin adsorption isotherm. Some thermodynamic parameters were computed and discussed. The results indicated that the protection efficiency increases by raising both the doses of the inhibitor and the temperature of the medium. The morphology of the MS surface was analyzed by scanning electron microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy. All of the obtained results from different techniques are similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Musa, A.Y., Khadom, A.A., and Kadhum, A.H., J. Taiwan Inst. Chem. Eng., 2010, vol. 41, pp. 126–128.

    Google Scholar 

  2. Ameer, M.A. and Fekry, A.M., Int. J. Hydrogen Energy, 2010, vol. 35, pp. 11387–11396.

    Google Scholar 

  3. Loto, R.T., Loto, C.A., and Popoola, A.P.I., J. Mater. Environ. Sci., 2012, vol. 3, pp. 885–894.

    Google Scholar 

  4. Ladha, D.G., Naik, U.J., and Shah, N.K., J. Mater. Environ. Sci., 2013, vol. 4, pp. 701–708.

    Google Scholar 

  5. Hajjaji, N., Ricco, I., Srhiri, A., Lattes, et al., Corrosion, 1993, vol. 49, pp. 326–334.

    Google Scholar 

  6. Elachouri, M., Hajji, M.S., Salem, M., Kertit, S., et al., Corros. Sci., 1995, vol. 37, pp. 381–389.

    Google Scholar 

  7. Luo, H., Guan, Y.C., and Han, K.N., Corrosion, 1998, vol. 54, pp. 619–627.

    Google Scholar 

  8. Migahed, M.A., Azzam, E.M.S., and Al-Sabagh, A.M., Mater. Chem. Phys., 2004, vol. 85, pp. 273–279.

    Google Scholar 

  9. Osman, M.M., Omar, A.M., and Al-Sabagh, A.M., Mater. Chem. Phys., 1997, vol. 50, pp. 271–274.

    Google Scholar 

  10. Zucchi, F., Trabanelli, G., and Brunoro, G., Corros. Sci., 1992, vol. 33, pp. 1135–1139.

    Google Scholar 

  11. Villamil, R.F.V., Corio, P., Rubim, J.C., and Siliva Agostinho M.L., J. Electroanal. Chem., 1999, vol. 472, pp. 112–119.

    Google Scholar 

  12. Zhao, T.P. and Mu, G.N., Corros. Sci., 1999, vol. 41, pp. 1937–1944.

    Google Scholar 

  13. Abd El Rehim, S.S., Hassan, H., and Amin, M.A., Mater. Chem. Phys., 2001, vol. 70, pp. 64–72.

    Google Scholar 

  14. Abd El Rehim, S.S., Hassan, H., and Amin, M.A., Mater. Chem. Phys., 2003, vol. 78, pp. 337–348.

    Google Scholar 

  15. Guo, R., Liu, T., and Wei, X., Colloids Surf., 2002, vol. 209, pp. 37–45.

    Google Scholar 

  16. Branzoi, V., Golgovici, F., and Branzoi, F., Mater. Chem. Phys., 2002, vol. 78, pp. 122–131.

    Google Scholar 

  17. Bentiss, T.F. and Lagrenee, M., Corros. Sci., 2000, vol. 42, pp. 127–146.

    Google Scholar 

  18. Brett C.M.A., Gomes I.A.R., and Martins J.P.S., Corros. Sci., 1994, vol. 36, pp. 915–923.

    Google Scholar 

  19. Elachouri, M. Hajji, M., Salem, M., Kertit, S., et al., Corrosion, 1996, vol. 52, pp. 103–108.

    Google Scholar 

  20. Algaber, A.S., El-Nemma, E.M., and Saleh, M.M., Mater. Chem. Phys., 2004, vol. 86, pp. 26–32.

    Google Scholar 

  21. Oukhrib, R., El Ibrahimi, B., Bourzi, H., El Mouaden, K., et al., J. Mater. Environ. Sci., 2017, vol. 8, no. 1, pp. 195–208.

    Google Scholar 

  22. Al-Azzawi, A.M. and Hammud, K.K., Int. J. Res. Pharm. Chem., 2016, vol. 6, no. 3, pp. 391–402.

    Google Scholar 

  23. El Ouasif, L., Merimi, I., Zarrok, H., El Ghoul, M., et al., J. Mater. Environ. Sci., 2016, vol. 7, no. 8, pp. 2718–2730.

    Google Scholar 

  24. Sani, U.M. and Sman, U.U., Int. J. Risk Contingency Manage., 2016, vol. 3, no. 3, pp. 30–37.

    Google Scholar 

  25. Kolo, A.M., Sani, U.M., Kutama, U., and Usman, U., Pharm. Chem. J., 2016, vol. 3, no. 1, pp. 109–119.

    Google Scholar 

  26. Ameh, P.O. and Sani, U.M., J. Heterocyclics, 2015, vol. 101, pp. 2–6.

    Google Scholar 

  27. Kushwah, R. and Pathak, R.K., J. Emerging Technol. Adv. Eng., 2014, vol. 4, no. 7, pp. 880–884.

    Google Scholar 

  28. Fouda, A.S., EL-Haddad, M.N., and Abdallah, Y.M., Int. J. Innovative Res. Sci.,Eng. Technol., 2013, vol. 2, no. 12, pp. 7073–7085.

    Google Scholar 

  29. Ofoegbu, S.U. and Ofoegbu, P.U., J. Eng. Appl. Sci., 2012, vol. 7, no. 3, pp. 272–276.

    Google Scholar 

  30. Mu, G.N., Zhao, T.P., Liu, M., and Gu, T., Corrosion, 1996, vol. 52, pp. 853–856.

    Google Scholar 

  31. Lipkowski, J. and Ross, P.N., Adsorption of Molecules at Metal Electrodes, New York: Wiley, 1992.

    Google Scholar 

  32. Da Costa, S.L.F.A. and Agostinho, S.M.L., Corrosion, 1989, vol. 45, pp. 472–477.

    Google Scholar 

  33. Aljourani, J., Raeissi, K., and Golozar, M.A., Corros. Sci., 2009, vol. 51, pp. 1836–1843.

    Google Scholar 

  34. Ivanov, E.S., Ingibitory korrozii metallov v kislykh sredakh (Inhibitors for Metal Corrosion in Acid Media), Moscow: Metallurgiya, 1986.

  35. Lebrini, M., Bentiss, F., Vezin, H., and Lagrenee, M., Corros. Sci., 2006, vol. 48, pp. 1279–1291.

    Google Scholar 

  36. Hour, T.P. and Holliday, R.D., J. Appl. Chem., 1953, vol. 3, pp. 502–513.

    Google Scholar 

  37. Riggs, L.O. and Hurd, T.J., Corrosion, 1967, vol. 23, pp. 252–260.

    Google Scholar 

  38. Schmid, G.M. and Huang, H.J., Corros. Sci., 1980, vol. 20, pp. 1041–1057.

    Google Scholar 

  39. Kus, E. and Mansfeld, F., Corros. Sci., 2006, vol. 48, pp. 965–979.

    Google Scholar 

  40. Tang, L, Li, X, Si, Y., Mu, G., et al., Mater. Chem. Phys., 2006, vol. 95, pp. 29–38.

    Google Scholar 

  41. Caigman, G.A., Metcalf, S.K., and Holt, E.M., J. Chem. Cryst., 2000, vol. 30, pp. 415–422.

    Google Scholar 

  42. Trabanelli, G., Montecelli, C., Grassi, V., and Frignani, A., Cem. Concr. Res., 2005, vol. 35, pp. 1804–1813.

    Google Scholar 

  43. McCafferty E. and Hackerman N., J. Electrochem. Soc., 1972, vol. 119, pp. 146–154.

    Google Scholar 

  44. Ma, H., Chen, S., Niu, L., Zhao, S., et al., J. Appl. Electrochem., 2002, vol. 32, pp. 65–72.

    Google Scholar 

  45. Fouda A.S., Ibrahim, H., and Atef, M., Results Phys., 2017, vol. 7, pp. 3408–3418.

    Google Scholar 

  46. Patmore, H., Jebreel, A., Uppal, S., Raine, C.H., et al., Am. J. Otolaryngol., 2010, vol. 31, no. 5, pp. 376–380.

    Google Scholar 

  47. Ridder, G.J., Breunig, C., Kaminsky, J., and Pfeiffer, J., Eur. Arch. Otorhinolaryngol., 2015, vol. 272, no. 5, pp. 1269–1276.

    Google Scholar 

  48. Kraus, D.H., Rehm, S.J., and Kinney, S.E., Laryngoscope, 1988, vol. 98, no. 9, pp. 934–939.

    Google Scholar 

  49. Sharma, P., Agarwal, K.K., Kumar, S., Singh, H., et al., Jpn. J. Radiol., 2013, vol. 31, no. 2, pp. 81–88.

    Google Scholar 

  50. Stokkel, M.P., Boot, C.N., and van Eck-Smit, B.L., Laryngoscope, 1996, vol. 106, no. 3, pp. 338–340.

    Google Scholar 

  51. Clark, M.P., Pretorius, P.M., Byren, I., and Milford, C.A., Skull Base, 2009, vol. 19, no. 4, pp. 247–254.

    Google Scholar 

  52. Okpala, N.C., Siraj, Q.H., Nilssen, E., and Pringle, M., J. Laryngol. Otol., 2005, vol. 119, no. 1, pp. 71–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Fouda.

Ethics declarations

The authors declare to have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouda, A.S., El-Dossoki, F.I., El-Hossiany, A. et al. Adsorption and Anticorrosion Behavior of Expired Meloxicam on Mild Steel in Hydrochloric Acid Solution. Surf. Engin. Appl.Electrochem. 56, 491–500 (2020). https://doi.org/10.3103/S1068375520040055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520040055

Keywords:

Navigation