Skip to main content
Log in

Thermodynamic Description of Chemical Reactions in a Titanium–Aluminum–Hexamethylenetetramine System under Conditions of Self-Propagating, High Temperature Synthesis

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Based on experimental and theoretical data, thermodynamic analysis of possible chemical reactions occurring in the titanium–aluminum–hexamethylenetetramine system under conditions of self-propagating, high temperature synthesis (SPHTS) was performed. It was shown that, under the above conditions, the MAX-phase Ti3AlC2 can be predominantly formed at cooling down the material up to temperatures lower than 1100 K. The highest negative values at T = 298 K are those of enthalpy and Gibbs energy of the combustion reaction of hexamethylenetetramine combustion in the air, which allows for the assumption that this is the starting reaction for the synthesis process under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Radovic, M. and Barsoum, M.W., Am. Ceram. Soc. Bull., 2013, vol. 92, no. 3, pp. 20–27.

    Google Scholar 

  2. Łopaciński, M., Puszynski, J., and Lis, J., J. Am. Ceram. Soc., 2001, vol. 84, no. 12, pp. 3051–3053.

    Article  Google Scholar 

  3. Zhou, A.G., Wang, C.A., Ge, Z.B., and Wu, L.F., J. Mater. Sci. Lett., 2001, no. 20, pp. 1971–1973.

  4. Barsoum, M.W., Ali, M., and El-Raghy, T., Metall. Mater. Trans. A, 2000, vol. 31, pp. 1857–1865.

    Article  Google Scholar 

  5. Syzonenko, O., Sheregii, E., Prokhorenko, S., Torpakov, A., et al., Mach., Technol., Mater., 2017, no. 4, pp. 171–173.

  6. Pietzka, M.A. and Schuster, J.C., J. Phase Equilib., 1994, vol. 15, no. 4, pp. 392–400.

    Article  Google Scholar 

  7. Pietzka, M.A. and Schuster, J.C., J. Am. Ceram. Soc., 1996, vol. 79, pp. 2321–2330.

    Article  Google Scholar 

  8. Tzenov, N.V. and Barsoum, M.W., J. Am. Ceram. Soc., 2000, vol. 83, no. 4, pp. 825–832.

    Article  Google Scholar 

  9. Chelpanov, D.I., Yushchishina, A.N., and Kuskova, N.I., Surf. Eng. Appl. Electrochem., 2019, vol. 55, no. 3, pp. 349–356.

    Article  Google Scholar 

  10. Kuskova, N.I., Baklar’, V.Yu., Terekhov, A.Yu., Yushchishina, A.N., et al., Surf. Eng. Appl. Electrochem., 2014, 50, no. 2, pp. 101–105.

    Article  Google Scholar 

  11. Zhou, A., Wang, C., and Huang, Y., Mater. Sci. Eng., A, 2003, vol. 352, nos. 1–2, pp. 333–339.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Yushchishina.

Ethics declarations

The authors declare to have no conflict of interest.

Additional information

Translated by M. Baznat

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushchishina, A.N., Chelpanov, D.I. & Kuskova, N.I. Thermodynamic Description of Chemical Reactions in a Titanium–Aluminum–Hexamethylenetetramine System under Conditions of Self-Propagating, High Temperature Synthesis. Surf. Engin. Appl.Electrochem. 56, 469–473 (2020). https://doi.org/10.3103/S1068375520040171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520040171

Keywords:

Navigation