Skip to main content
Log in

Validated Electrochemical Method for Simultaneous Resolution of Tyrosine, Uric Acid, and Ascorbic Acid at Polymer Modified Nano-Composite Paste Electrode

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract—

In this work, an electrochemical sensor based on a poly threonine modified graphite-carbon nanotube paste electrode was developed for the investigation of tyrosine. The modification of the electrode was characterized by field emission scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry. The modified electrode shows many advantages such as simple preparation, good sensitivity, short response time, good stability and reproducibility. The developed electrode was highly selective because of the determination of tyrosine in the presence of the ascorbic acid and the uric acid. Under optimal conditions; the cyclic voltammetry provides a linear response with the concentration range from 2 × 10–6 to 2.5 × 10–5 M and 3 × 10–5 to 1.2 × 10–4 M with the limit of detection and limit of quantification values of 2.9 × 10–7 and 9.6 × 10–7 M. The developed sensor was employed for tyrosine detection in pharmaceutical sample, recoveries obtained were in a range of 99.0 to 102.80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Beck, G., Hanusch, C., Brinkkoetter, P., Rafat, N., et al., Anaesthesist, 2005, vol. 54, pp. 1012–1020.

    Google Scholar 

  2. Carlsson, A., Lindqvist, M., and Arch, N.S., Pharmacology, 1978, vol. 303, pp. 157–164.

    Google Scholar 

  3. Li, C.Y., Colloids Surf., B, 2006, vol. 50, pp. 147–151.

    Google Scholar 

  4. Cathcart, R.F., Med. Hypotheses, 1991, vol. 35, pp. 32–37.

    Google Scholar 

  5. Huang, Y., Jiang, X.Y., Wang, W., Duan, J.P., et al., Talanta, 2006, vol. 70, pp. 1157–1163.

    Google Scholar 

  6. Deng, C., Deng, Y., Wang, B., and Yang, X., J. Chromatogr. B, 2002, vol. 780, pp. 407–413.

    Google Scholar 

  7. Letellier, S., Garnier, J.P., Spy, J., and Bousquet, B., J. Chromatogr. B, 1997, vol. 696, pp. 9–17.

    Google Scholar 

  8. Yildiz, H.B., Freeman, R., Gill, R., and Willner, I., Anal. Chem., 2008, vol. 80, pp. 2811–2816.

    Google Scholar 

  9. Alonso, S., Zamora, L., and Calatayud, M., Talanta, 2003, vol. 60, pp. 369–376.

    Google Scholar 

  10. Manjunatha, J.G., Asian J.Pharm. Clin. Res., 2017, vol. 10, pp. 295–300.

    Google Scholar 

  11. Sathish, R., Debasis, C., Shashanka, R., et al., Anal. Bioanal. Electrochem., 2013, vol. 5, pp. 455–466.

    Google Scholar 

  12. Manjunatha, J.G., Kumara, Swamy B.E., Mamatha, G.P., Raril, C., et al., Mater. Today, 2018, vol. 5, pp. 22368–22375.

    Google Scholar 

  13. Kumara Swamy B.E., Shashanka, R., and Debasis, C., Int. J. Sci. Eng. Res., 2016, vol. 7, pp. 1275–1285.

    Google Scholar 

  14. Raril, C. and Manjunatha, J.G., Anal. Bioanal. Electrochem., 2018, vol. 10, pp. 372–382.

    Google Scholar 

  15. Shashanka, R., IntechOpen.https://doi.org/10.5772/intechopen.80980

  16. Manjunatha, J.G., J. Surf. Sci. Technol., 2018, vol. 34, pp. 74–80.

    Google Scholar 

  17. Gururaj, K.J., Kumara, Swamy B.E., Norberto, C., and Flores-Moreno, R., Electrochim. Acta, 2017, vol. 258, pp. 1025–1034.

    Google Scholar 

  18. Manjunatha, J.G., Sens. Biosens. Res., 2017, vol. 16, pp. 79–84.

    Google Scholar 

  19. Raril, C. and Manjunatha, J.G., Anal. Bioanal. Electrochem., 2018, vol. 10, pp. 488–498.

    Google Scholar 

  20. Manjunatha, J.G., J. Food Drug Anal., 2018, vol. 26, pp. 292–299.

    Google Scholar 

  21. Manjunatha, J.G. and Deraman, M., Anal. Bioanal. Electrochem., 2017, vol. 9, pp. 198–213.

    Google Scholar 

  22. Gururaj, K.J. and Flores-Moreno, R., Electrochim. Acta, 2017, vol. 248, pp. 225–231.

    Google Scholar 

  23. Manjunatha, J.G., J. Electrochem. Sci. Eng., 2017, vol. 7, pp. 39–49.

    Google Scholar 

  24. Manjunatha, J.G., Deraman M., Basri, N.H., and Talib, I.A., Arab. J. Chem., 2018, vol. 11, pp. 149–158.

    Google Scholar 

  25. Shashanka, R., Chaira, D., and Kumara Swamy, B.E., Int. J. Electrochem. Sci., 2015, vol. 10, pp. 5586–5598.

    Google Scholar 

  26. Manjunatha, J.G., Int. J. ChemTech. Res., 2016, vol. 9, pp. 136–146.

    Google Scholar 

  27. Raril, C. and Manjunatha, J.G., Biomed. J. Sci. Tech. Res., 2018, vol. 9, pp. 1–6.

    Google Scholar 

  28. Raril, C. and Manjunatha, J.G., Modern Chem. Appl., 2018, vol. 6, art. ID 1000263. https://doi.org/10.4172/2329-6798.1000263

    Article  Google Scholar 

  29. Baghayeri, M., Veisi, H., Maleki, B., Karimi-Maleh, H., and Beitollahi, H., RSC Adv., 2014, vol. 4, pp. 49595–49604.

    Google Scholar 

  30. Shashanka, R., Int. J. Sci. Eng. Res., 2015, vol. 6, pp. 1863–1871.

    Google Scholar 

  31. Beitollahi, H., Hamzavi, M., Torkzadeh-Mahani, M., Shanesaz, M., et al., Electroanalysis, 2014, vol. 27, pp. 524–533.

    Google Scholar 

  32. Gururaj, K.J., Kumara Swamy, B.E., Chandrashekar, B.N., and Flores-Moreno, R., J. Mol. Liq., 2017, vol. 240, pp. 395–401.

    Google Scholar 

  33. Mohandoss, S. and Stalin, T., Int. J. Adv. Res., 2013, vol. 1, pp. 381–396.

    Google Scholar 

  34. Behpour, S.M., Jafari, M.N., and Khoobi, A., Anal. Lett., 2013, vol. 46, pp. 299–311.

    Google Scholar 

  35. Beitollahi, H., Nekooei, S., and Torkzadeh–Mahani, M., Talanta, 2018, vol. 188, pp. 701–707.

    Google Scholar 

  36. Gururaj, K.J., Kumara Swamy, B.E., Ramirez, H.N.G., Ekanthappa M.T., et al., New J. Chem., 2018, vol. 42, pp. 4501–4506.

    Google Scholar 

  37. Kemula, W. and Kublik, Z., Nature, 1958, vol. 182, pp. 793–794.

    Google Scholar 

  38. Wang, L., Huang, P., Bai, J., Wang, H., et al., Int. J. Electrochem. Sci., 2006, vol. 1, pp. 334–342.

    Google Scholar 

  39. Wang, S., Xu, Q., and Liu, G., Electroanalysis, 2008, vol. 20, pp. 1116–1120.

    Google Scholar 

  40. Islamnezhada, A. and Jobaneh, E.F., Adv. Mater. Res., 2013, vol. 829, pp. 675–680.

    Google Scholar 

  41. Filik, H., Avan, A.A., and Aydar, S., Arab. J. Chem., 2016, vol. 9, pp. 471–480.

    Google Scholar 

  42. Arvand, M., Pourhabib, A., and Giahi, M., J. Pharm. Anal., 2017, vol. 7, pp. 110–117.

    Google Scholar 

  43. Jiang, L., Shuqing, G., Ding, Y., Daixin, Y., et al., Colloids Surf., B, 2013, vol. 107, pp. 146–151.

    Google Scholar 

  44. Raril, C., Manjunatha, J.G., Nanjundaswamy, L., Siddaraju, G., et al., Anal. Bioanal. Electrochem., 2018, vol. 10, pp. 1479–1490.

    Google Scholar 

  45. Ya, Y., Luo, D., Zhan, G., and Chunya, L., Bull. Korean Chem. Soc., 2008, vol. 29, pp. 928–932.

    Google Scholar 

  46. Behpour, M., Masoum, S., and Meshki, M., J. Nanostruct., 2013, vol. 3, pp. 243–251.

    Google Scholar 

  47. Denga, K.Q., Zhou, J.H., and Li, X.F., Colloids Surf., B, 2013, vol. 101, pp. 183–188.

    Google Scholar 

  48. Tang, X., Liu, Y., Hou, H., and You, T., Talanta, 2010, vol. 80, pp. 2182–2186.

    Google Scholar 

  49. Hareesha, N., Manjunatha, J.G., Raril, C., and Girish, T., Adv. Pharm. Bull., 2019, vol. 9, pp. 132–137.

    Google Scholar 

  50. Ghoreishi, S.M., Behpour, M., Delshad, M., and Khoobi, A., Central Eur. J. Chem., 2012, vol. 10, pp. 1824–1829.

    Google Scholar 

  51. Chitravathi, S., Kumara Swamy, B.E., Mamatha, G.P., and Chandrashekar, B.N., J. Mol. Liq., 2012, vol. 172, pp. 130–135.

    Google Scholar 

  52. Raril, C. and Manjunatha, J.G., Curr. Top. Electrochem., 2019, vol. 21, pp. 93–105.

    Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from the Vision Group on Science and Technology, Bangalore, India under the Research Project KSTePS/VGST-KFIST (L1) 2016-2017/GRD-559/2017-2018/126/333, 21/11/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamballi G. Manjunatha.

Ethics declarations

The authors declare to have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chenthattil Raril, Manjunatha, J.G., Ravishankar, D.K. et al. Validated Electrochemical Method for Simultaneous Resolution of Tyrosine, Uric Acid, and Ascorbic Acid at Polymer Modified Nano-Composite Paste Electrode. Surf. Engin. Appl.Electrochem. 56, 415–426 (2020). https://doi.org/10.3103/S1068375520040134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520040134

Keywords:

Navigation