Skip to main content
Log in

Influence of Surface Recombination on Open Circuit-Voltage of a Single Nanowire Solar Cell with Radial p-n Junction

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

An analytical model is proposed for the study of the effect of surface recombination on the characteristics of a solar cell made of a nanowire with a radial p-n junction formed between its ‘core’ and ‘shell’ with different types of the conductivity. The influence of the surface recombination on such important parameters of the solar cell as the short circuit current, open circuit voltage, and efficiency of conversion of the energy of solar radiation into electrical energy is considered when the shell width is varying over a wide range. It is shown that the relatively low open-circuit voltage, often observed experimentally in such solar cells, can be partially caused by significant surface recombination on the sidewall of the nanowire, the role of which increases with decreasing nanowire diameter and increasing surface to volume ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Dubrovskii, V.G., Cirlin, G.E., and Ustinov, V.M., Semiconductors, 2009, vol. 43, p. 1539.

    Article  ADS  Google Scholar 

  2. Soci, C., Zhang, A., Bao, X.-Y., Kim, H., Lo, Y., and Wang, D., J. Nanosci. Nanotechnol., 2010, vol. 10, p. 1430.

    Article  Google Scholar 

  3. Tian, B., Kempa, J., and Lieber, Ch., Chem. Soc. Rev., 2009, vol. 38, p. 16.

    Article  Google Scholar 

  4. LaPierre, R.R., Chia, A.A.E., Gibson, S.J., et al., Phys. Stat. Solidi RRL, 2013, vol. 7, p. 815.

    Article  Google Scholar 

  5. Sibirev, N.V., Kotlyar, K.P., Koryakin, A.A. et al., Semiconductors, 2018, vol. 52, p. 1568.

    Article  ADS  Google Scholar 

  6. Schmidt, V., Rien, H., Senz, S., et al., Small, 2006, vol. 2, p. 85.

    Article  Google Scholar 

  7. Patolsky, E., Zheng, G., Hayden, O., et al., Proc. Natl. Acad. Sci. USA(PNAS), 2004, vol. 101, p. 14017.

    Article  ADS  Google Scholar 

  8. Tian, B.T., Zheng, X., Kempa, T.J., et al., Nature, 2007, vol. 449, p. 885.

    Article  ADS  Google Scholar 

  9. Kempa, T.J., Cahoona, J.F., Kima, S.-K., et al., Proc. Natl. Acad. Sci. USA(PNAS), 2012, vol. 109, p. 1407.

    Article  ADS  Google Scholar 

  10. Fan, H.J., Werner, P., and Zacharias, M., Small, 2006, vol. 2, p.700.

    Article  Google Scholar 

  11. Tsakalakos, L., Balch, J., Fronheiser, J., et al., Appl. Phys. Lett., 2007, vol. 91, p. 233117.

    Article  ADS  Google Scholar 

  12. Garnett, E., and Yang P., J. Am. Chem. Soc, 2008, vol. 130, p. 9224.

    Article  Google Scholar 

  13. Kelzenberg, M.D., Turner-Evans, D.B., Kayes, B.M., et al., Nano Lett., 2008, vol. 8, p. 710.

    Article  ADS  Google Scholar 

  14. Colombo, C., Heib, M., Gratzel, M., Fontcubereta, A., and Morral, I., Appl. Phys. Lett., 2009, vol. 94, p. 173108.

    Article  ADS  Google Scholar 

  15. Krogstrup, P., Jorgensen, H.I., Heiss, M., et al., Nature Photonics, 2013, vol. 7, p. 306.

    Article  ADS  Google Scholar 

  16. Kayes, B.M., and Atwater, H., J. Appl. Phys., 2005, vol. 97, p. 114302.

    Article  ADS  Google Scholar 

  17. LaPierre, R.R., J. Appl. Phys., 2011, vol. 109, p. 034311.

    Article  ADS  Google Scholar 

  18. Boukai, A., Haney, P., Katzenmeyer, A., et al., Chem. Phys. Lett., 2011, vol. 501, p. 153.

    Article  ADS  Google Scholar 

  19. Christesen, J.D., Zhang, X., Pinion Ch.W., et al., Nano Lett., 2012, vol. 12, p. 6024.

    Article  ADS  Google Scholar 

  20. Petrosyan, S.G., Yesayan, A.E., Nersesyan, S.R., and Khachatryan, V.A., Semiconductors, 2018, vol. 52, p. 2022.

    Article  ADS  Google Scholar 

  21. Voigt, F., Stelzner, T., Christianser, S., Mater. Sci. Eng. B, 2012, vol. 177, p. 1558.

    Article  Google Scholar 

  22. Kupec, J., and Witzigmann, B., Opt. Express, 2009, vol. 17, p. 10399.

    Article  ADS  Google Scholar 

  23. Pikus, G.E., Osnovi teorii poluprovodnikovix priborov (Fundamentals of the theory of semiconductor devices), Moscow: Nauka, 1965.

    Google Scholar 

  24. Petrosyan, S., Yesayan, A., and Nersesyan, S., World Academy of Scince, Engineering and Technology, 2012, vol. 71, p. 1065.

    Google Scholar 

  25. Wang, H., Liu, X., and Zhang, Zh.M., Int. J. Thermophys, 2013, vol. 34, p. 213.

    Article  ADS  Google Scholar 

  26. Green, M.A., Sol. Energy Mater. Sol. Cells, 2008, vol. 92, p. 1305.

    Article  Google Scholar 

  27. Holm, J.V., Jorgensen, H.I., Krogstrap, P., et al., Nat. Commun., 2013, vol. 4, p. 1498.

    Article  ADS  Google Scholar 

Download references

Funding

This work was partially supported by the Russian-Armenian University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Petrosyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V. Aroutiounian

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrosyan, S.G., Khachatryan, V.A. & Nersesyan, S.R. Influence of Surface Recombination on Open Circuit-Voltage of a Single Nanowire Solar Cell with Radial p-n Junction. J. Contemp. Phys. 55, 225–234 (2020). https://doi.org/10.3103/S1068337220030111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337220030111

Keywords:

Navigation