Skip to main content
Log in

Preparation of Photocatalizers Based on Titanium Dioxide Synthesized Using a Microreactor with Colliding Jets

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In a microreactor with colliding jets using solutions of titanium tetraisopropylate and water in isopropyl alcohol, a number of titanium dioxide powders are obtained. It is shown that an additional heat treatment of samples up to 350°C for 30 min is sufficient for the formation of the anatase phase. The developed method allows synthesis in a short time, provides low energy consumption, does not require labor-intensive operations, and is technological and easily scalable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Mori, K., Photo-functionalized materials using nanoparticles: Photocatalysis, J. Soc. Powder Technol. Jpn., 2004, vol. 41, pp. 750–756.

    CAS  Google Scholar 

  2. Hisatomi, T., Kubota, J., and Domen, K., Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev., 2014, vol. 43, pp. 7520–7535.

    Article  CAS  Google Scholar 

  3. Meskin, P.E., Ivanov, V.K., and Barantchikov, A.E., Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5Zn0.5Fe2O4 powders, Ultrason. Sonochem., 2006, vol. 13, pp. 47–53.

    Article  CAS  Google Scholar 

  4. Ivanov, V.K., Maksimov, V.D., Shaporev, A.S., Hydrothermal synthesis of efficient TiO2-based photocatalysts, Russ. J. Inorg. Chem., 2010, vol. 55, no. 2, pp. 150–154.

    Article  CAS  Google Scholar 

  5. Zhou, W., Zhang, P., and Liu, W., Anatase TiO2 nanospindle/activated carbon (AC) composite photocatalysts with enhanced activity in removal of organic contaminant, Int. J. Photoenergy, 2012, 325902.

  6. Zhou, W. and He, Yo., Ho/TiO2 nanowires heterogeneous catalyst with enhanced photocatalytic properties by hydrothermal synthesis method, Chem. Eng. J., 2012, vol. 179, pp. 412–416.

    Article  CAS  Google Scholar 

  7. Yang, H.G., Liu, G., and Qiao, S.Z., Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets, J. Am. Chem. Soc., 2009, vol. 131, pp. 4078–4083.

    Article  CAS  Google Scholar 

  8. Yu, Y., Cao, C., and Li, W., Low-cost synthesis of robust anatase polyhedral structures with a preponderance of exposed {001} facets for enhanced photoactivities, Nano Res., 2012, vol. 5, no. 6, pp. 434–442.

    Article  CAS  Google Scholar 

  9. Arconada, N., Duran, A., and Suarez, S., Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol-gel, Appl. Catal., B, 2009, vol. 86, nos. 1–2, pp. 1–7.

    Article  CAS  Google Scholar 

  10. Arconada, N., Castro, Y., and Duran, A., Photocatalytic properties in aqueous solutionofporous TiO2-anatase films prepared by sol-gel process, Appl. Catal., A., 2010, vol. 385, nos. 1–2, pp. 101–107.

    Article  CAS  Google Scholar 

  11. Cong-Ju, L. and Guo-Rong, X., Influence of ammonia on the morphologies and enhanced photocatalytic activity of TiO2 micro/nanospheres, Appl. Surf. Sci., 2011, vol. 257, pp. 4951–4955.

    Article  Google Scholar 

  12. Garnweitner, G. and Niederberger, M., Nonaqueous and surfactant-free synthesis routes to metal oxide nanoparticles, J. Am. Ceram. Soc., 2006, vol. 89, no. 6, pp. 1801–1808.

    Article  CAS  Google Scholar 

  13. Wahi, R.K., Liu, Y., Falkner, J.C., et al., Solvothermal synthesis and characterization of anatase TiO2 nanocrystals with ultrahigh surface area, J. Colloid Interface Sci., 2006, vol. 302, pp. 530–536.

    Article  CAS  Google Scholar 

  14. Ye, J., Liu, W., and Cai, J., Nanoporous anatase TiO2 mesocrystals: Additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior, J. Am. Chem. Soc., 2011, vol. 133, pp. 933–940.

    Article  CAS  Google Scholar 

  15. Pinna, N., Karmaoui, M., and Willinger, M.-G., The 'benzyl alcohol route': An elegant approach towards doped and multimetal oxide nanocrystals, J. Sol-Gel Sci. Technol., 2011, vol. 57, no. 3, pp. 323–329.

    Article  CAS  Google Scholar 

  16. Kolodziej, P., Yang, W.P., Macosko, C.W., and Wellinghoff, S.T., Impingement mixing and its effect on the microstructure of RIM polyurethanes, J. Polym. Sci.,Part B, 1986, vol. 24, no. 10, pp. 2359–2377.

    Article  CAS  Google Scholar 

  17. Johnson, B.K. and Prud’homme, R.K., Chemical processing and micromixing in confined impinging jets, AIChE J., 2003, vol. 49, no. 9, pp. 2264–2282.

    Article  CAS  Google Scholar 

  18. Ravi Kumar, D.V., Prasad, B.L.V., and Kulkarni, A.A., Impinging jet micromixer for flow synthesis of nanocrystalline MgO: Role of mixing/impingement zone, Ind. Eng. Chem. Res., 2013, vol. 52, no. 49, pp. 17376–17382.

    Article  Google Scholar 

  19. Abiev, R.Sh., Almyasheva, O.V., Gusarov, V.V., and Izotova, S.G., RF Patent 2625981, Byull. Izobret., 2017, no. 20.

  20. Abiev, R.S., Almyasheva, O.V., Izotova, S.G., and Gusarov, V.V., Synthesis of cobalt ferrite nanoparticles by means of confined impinging-jets reactors, J. Chem. Technol. Appl., 2017, vol. 1, no. 1, pp. 7–13.

    Google Scholar 

  21. Proskurina, O.V., Nogovitsin, I.V., Il’ina, T.S., Danilovich, D.P., Abiev, R.Sh., and Gusarov, V.V., Formation of BiFeO3 nanoparticles using impinging jets microreactor, Russ. J. Gen. Chem., 2018, vol. 88, no. 10, pp. 2139–2143.

    Article  CAS  Google Scholar 

  22. Proskurina, O.V., Sivtsov, E.V., Enikeeva, M.O., Sirotkin, A.A., Abiev, R.Sh., and Gusarov, V.V., Formation of rhabdophane structured lanthanum orthophosphate nanoparticles in an impinging jets microreactor and rheological properties of sols based on them, Nanosyst.: Phys., Chem. Math., 2019, vol. 10, no. 2, pp. 206–214.

    CAS  Google Scholar 

  23. Proskurina, O.V., Abiev, R.S., Danilovich, D.P., Panchuk, V.V., Semenov, V.G., Nevedomsky, V.N., and Gusarov, V.V., Formation of nanocrystalline BiFeO3 during heat treatment of hydroxides co-precipitated in an impinging-jets microreactor, Chem. Eng. Process.: Process Intensif., 2019, vol. 143, 107598.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The results of scanning electron microscopy were obtained using the equipment of St. Petersburg State Technological Institute.

Funding

The study was performed as part of a state task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zdravkov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashova, Y.S., Zdravkov, A.V., Ugolkov, V.L. et al. Preparation of Photocatalizers Based on Titanium Dioxide Synthesized Using a Microreactor with Colliding Jets. Glass Phys Chem 46, 335–340 (2020). https://doi.org/10.1134/S1087659620040082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659620040082

Keywords:

Navigation