Skip to main content

Advertisement

Log in

Existence identifications of unobserved paths in graph-based social networks

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

In recent years, social networks have surged in popularity as one of the main applications of the Internet. One key aspect of social network research is exploring important unobserved network information which is not explicitly represented. This study first introduces a new path identification problem to identify the existences of unobserved paths between nodes. Given a partial social network structure where the indications of observed nodes about unobserved paths are assumed to exist, we propose a multiple-level classification based path identification method (MCPIM) for graph-based social networks. MCPIM presents the new multiple-level similarity to efficiently represent the structural positions of subgraph placeholders. Subsequently, a quantum mechanism based genetic classification algorithm (QGCA) is constructed to efficiently divide subgraph placeholders into different clusters. The nodes whose subgraph placeholders are in the same cluster owning large structural similarities are inferred to have unobserved paths. Results obtained by comparing with state-of-the-art methods via extensive experiments using disparate real-world social networks show that MCPIM can well identify the existences of unobserved paths between nodes in graph-based social networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Aggarwal, C., Subbian, K.: Evolutionary network analysis: a survey. ACM Comput. Surv. 47(1), 10 (2014)

    Article  Google Scholar 

  2. Bai, X., Latecki, L.: Path similarity skeleton graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1282–1292 (2008)

    Article  Google Scholar 

  3. Bütün, E., Mehmet, K., Reda, A.: Extension of neighbor-based link prediction methods for directed, weighted and temporal social networks. Inf. Sci. 463-464, 152–165 (2018)

    Article  MathSciNet  Google Scholar 

  4. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. SIGKDD. (2011)

  5. Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction of missing links in networks. Nature. 453(7191), 98–101 (2008)

    Article  Google Scholar 

  6. Eyal, R., Rosenfeld, A., Sina, S., et al.: Predicting and identifying missing node information in social networks. ACM Trans. Knowl. Discov. Data. 8(3), 1–35 (2013)

    Article  Google Scholar 

  7. Feng, X., Zhao, J.C., Xu, K.: Link prediction in complex networks: a clustering perspective. Eur. Phys. J. B. 85(1), 3 (2012)

    Article  Google Scholar 

  8. Girvan, M., Newman, M.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U. S. A. 99(12), 7821–7826 (2001)

    Article  MathSciNet  Google Scholar 

  9. Gleiser, P.M., Danon, L.: Community structure in Jazz[J]. Adv. Complex Syst. 6(04), 565–573 (2003)

    Article  Google Scholar 

  10. Guimerà, R., Sales-Pardo, M., Amaral, L.A.: Classes of complex networks defined by role-to-role connectivity profiles. Nat. Phys. 3(1), 63–69 (2006)

    Article  Google Scholar 

  11. Kand, M., Jure, L.: The network completion problem: inferring missing nodes and edges in networks. SDM. (2011)

  12. Klimt, B., Yang, Y.: The Enron Corpus: A New Dataset for Email Classification Research. European Conference on Machine Learning (2004)

  13. Konar, D., Bhattacharyya, S., Sharma, K., Sharma, S., Pradhan, S.R.: An improved hybrid quantum-inspired genetic algorithm (HQIGA) for scheduling of real-time task in multiprocessor system. Appl. Soft Comput. 53, 296–307 (2017)

    Article  Google Scholar 

  14. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters[J]. ACM Trans. Knowl. Discov. Data. 1(1), 2 (2006)

    Article  Google Scholar 

  15. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)

    Article  MathSciNet  Google Scholar 

  16. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting Positive and Negative Links in Online Social Networks. WWW (2010)

  17. Li, X.L., He, X.D.: A hybrid particle swarm optimization method for structure learning of probabilistic relational models. Inf. Sci. 283, 258–266 (2014)

    Article  Google Scholar 

  18. Liu, Y., Slotine, Y., Barabasi, A.: Controllability of complex networks. Nature. 473(7346), 167–173 (2011)

    Article  Google Scholar 

  19. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Physica A: Statistical Mechanics and Its Applications. 390(6), 1150–1170 (2011)

    Article  Google Scholar 

  20. Lü, L., Pan, L., Zhou, T., Zhang, Y.C., Stanley, H.E.: Towards link predictability of complex networks. Proc. Natl. Acad. Sci. U. S. A. 112(8), 2325–2330 (2015)

    Article  MathSciNet  Google Scholar 

  21. Mcauley, J., Leskovec, J.: Learning to discover social circles in Ego networks. NIPS. (2012)

  22. Meng, Y., Liu, X.: Quantum inspired evolutionary algorithm for community detection in complex networks. Phys. Lett. A. 34(31), 2305–2312 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys Rev E. 74(3), 036104 (2006)

    Article  MathSciNet  Google Scholar 

  24. Richardson, M., Agrawal, R., Domingos, P.M.: Trust Management for the Semantic Web. ISWC (2003)

  25. Salespardo, M., Roger, G., Moreira, A.A., et al.: Extracting the hierarchical organization of complex systems. Proc. Natl. Acad. Sci. U. S. A. 104(39), 15224–15229 (2007)

    Article  Google Scholar 

  26. Sett, N., Basu, S., Nandi, S., et al.: Temporal link prediction in multi-relational network. World Wide Web-internet and Web Information Systems. 21(2), 395–419 (2018)

    Google Scholar 

  27. Swingle, B., Bentsen, G., Schleier-Smith, M., Hayden, P.: Measuring the scrambling of quantum information. Phys. Rev. A. 94, (2016)

  28. Wang, H., Hu, W., Qiu, Z.: Nodes’ evolution diversity and link prediction in social networks. IEEE Trans. Knowl. Data Eng. 29(10), 2263–2274 (2017)

    Article  Google Scholar 

  29. Wang, Y., Feng, C., Chen, L., et al.: User identity linkage across social networks via linked heterogeneous network embedding. World Wide Web. (2018)

  30. Wang, Y., Ma, F., Jin, Z., et al: EANN: Event adversarial neural networks for multi-modal fake news detection. SIGKDD (2018)

  31. Wang, H., Wu, J., Hu, W., et al.: Detecting and assessing anomalous evolutionary behaviors of nodes in evolving social networks. ACM Trans. Knowl. Discov. Data. 13(1), 1–24 (2019)

    Article  Google Scholar 

  32. Yi-Cheng, C.: A novel algorithm for mining opinion leaders in social networks. World Wide Web. 22(3), 1279–1295 (2018)

    Google Scholar 

  33. Yu, K., Chu, W., Yu, S., et al.: Stochastic Relational Models for Discriminative Link Prediction. International Conference on Neural Information Processing Systems. MIT Press (2006)

Download references

Funding

This work is supported by the Key Special Project National Key R&D Program of China(2018YFC1604000), Chongqing Natural Science Foundation Project (cstc2020jcyjmsxm1593), and Independent Science and technology Innovation Fund project of Huazhong Agricultural University (2662019QD047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ni, Q., Wang, J. et al. Existence identifications of unobserved paths in graph-based social networks. World Wide Web 24, 157–173 (2021). https://doi.org/10.1007/s11280-020-00837-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-020-00837-4

Keywords

Navigation