Skip to main content
Log in

Effects on the Growth and Digestive Enzyme Activity in Nile Tilapia Fry (Oreochromis niloticus) by Lead Exposure

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Lead is a metal capable of affecting physiology and metabolism in fish, including Nile tilapia (Oreochromis niloticus). However, few studies have evaluated the effects of lead on digestive enzyme activities in fry. At that stage, independent feeding begins, and there is increased demand and consumption of food, so chronic exposure to metal during this stage of development would cause null or minimal growth in organisms. In this study, fry from Nile tilapia was used to evaluate the effects of lead acetate by chronic exposure on the growth and the activities of the digestive enzymes after 30 and 60 days exposures. Four treatment groups 0.025, 0.050, 0.075 and 0.100 mg/L of lead acetate and a lead-free control were established. The activity of enzymes decreased, in the case of acidic proteases after 30 days and lipases after 60 days of exposure, from 0.025 and 0.050 mg/L of lead acetate, respectively. The amylase activity increased in metal-treated, while the chymotrypsin decreased partially at 60 days. Lipases decreasing activity might be causing an increase of triglycerides (lipids) and body mass observed during the first 30 days of exposure. Concentrations, equal to or above 0.075 mg Pb/L, cause significant effects on size and weight of fry, with nearly 54% lower than controls. At chronic exposure and early stage of development, the enzymatic activity is partially reduced along with body weight gain, which would affect subsequent growing and aquaculture production. The digestive enzyme response is discussed as a possible limited biomarker of exposure, to be used in biomonitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Abdel-Tawwab, M., & Wafe, M. (2010). Efecto de la suplementación con Sel-Plex® sobre la respuesta de la Tilapia del Nilo, Oreochromis niloticus (L.) a la toxicidad por cadmio en el ambiente. Journal of World Aquaculture, 106–114.

  • Abdel-Tawwab, M., El-Sayed, G. O., & Shady, S. H. (2016). Growth, biochemical variables, and zinc bioaccumulation in Nile tilapia, Oreochromis niloticus (L.) as affected by water-born zinc toxicity and exposure period. International Aquatic Research, 8(3), 197–206. https://doi.org/10.1007/s40071-016-0135-0.

    Article  Google Scholar 

  • Abdel-Tawwab, M., El-Sayed, G. O., Monier, M. N., & Shady, S. H. (2017a). Dietary EDTA supplementation improved growth performance, biochemical variables, antioxidant response, and resistance of Nile tilapia, Oreochromis niloticus (L.) to environmental heavy metals exposure. Aquaculture, 473(2017), 478–486. https://doi.org/10.1016/j.aquaculture.2017.03.006.

    Article  CAS  Google Scholar 

  • Abdel-Tawwab, M., El-Sayed, G. O., & Shady, S. H. (2017b). Effect of dietary active charcoal supplementation on growth performance, biochemical and antioxidant responses, and resistance of Nile tilapia, Oreochromis niloticus (L.) to environmental heavy metals exposure. Aquaculture, 479(May), 17–24. https://doi.org/10.1016/j.aquaculture.2017.05.016.

    Article  CAS  Google Scholar 

  • Abedi, Z., Hasantabar, F., Khalesi, M. K., & Babaei, S. (2013). Enzymatic activities in common carp; Cyprinus carpio influenced by sublethal concentrations of cadmium, lead, chromium. World Journal of Fish and Marine Sciences, 5(2), 144–151. https://doi.org/10.5829/idosi.wjfms.2013.05.02.7143.

    Article  CAS  Google Scholar 

  • AILAD. (2010). Manual para el manejo de animales con fines de experimentación y de enseñanza. Villahermosa: UJAT.

    Google Scholar 

  • Aldoghachi, M. A., Azirun, M. S., Yusoff, I., & Ashraf, M. A. (2016). Ultrastructural effects on gill tissues induced in red tilapia Oreochromis sp. by a waterborne lead exposure. Saudi Journal of Biological Sciences, 23(5), 634–641. https://doi.org/10.1016/j.sjbs.2015.08.004.

    Article  CAS  Google Scholar 

  • Alm-Eldeen, A. A., Donia, T., & Alzahaby, S. (2018). Comparative study on the toxic effects of some heavy metals on the Nile Tilapia, Oreochromis niloticus, in the Middle Delta, Egypt. Environmental Science and Pollution Research, 25(15), 14636–14646. https://doi.org/10.1007/s11356-018-1677-z.

    Article  CAS  Google Scholar 

  • Alvarado-Flores, J. (2010). Efectos de la bioacumulación de plomo sobre la tasa intrínseca de crecimiento (r) y otros parámetros poblacionales, localizacióncelular del plomo, y determinación de factor de bioconcentración en una especie de rotífero dulceacuícola. Universidad Autónoma de Aguascalientes. Retrieved from https://search.ebscohost.com/login.aspx?direct=true&db=cat04898a&AN=ua.000146105&site=eds-live.

  • Anson, M. L. (1938). The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. Journal of General Physiology, 22(1), 79–89. https://doi.org/10.1085/jgp.22.1.79.

    Article  CAS  Google Scholar 

  • Anukoolpra, T., Srinuansom, K., Rukdontri, T., Nonkhukhet, S., & Petkam, R. (2019). Postprandial in vitro protease-specific activity of Nile tilapia (Oreochromis niloticus L.) digestive organs. Pakistan Journal of Nutrition, 18(2), 125–133. https://doi.org/10.3923/pjn.2019.125.133.

    Article  CAS  Google Scholar 

  • Araújo, F. G., Morado, C. N., Parente, T. T. E., Paumgartten, F. J. R., & Gomes, I. D. (2018). Biomarkers and bioindicators of the environmental condition using a fish species (Pimelodus maculatus Lacepède, 1803) in a tropical reservoir in Southeastern Brazil. Brazilian Journal of Biology, 78(2), 351–359. https://doi.org/10.1590/1519-6984.167209.

    Article  Google Scholar 

  • Baiomy, A. A. (2016). Histopathological biomarkers and genotoxicity in gill and liver tissues of Nile tilapia Oreochromis niloticus from a polluted part of the Nile River, Egypt. African Journal of Aquatic Science, 41(2), 181–191. https://doi.org/10.2989/16085914.2016.1168734.

    Article  CAS  Google Scholar 

  • Barbieri, E., Campos-Garcia, J., Martinez, D. S. T., Da Silva, J. R. M. C., Alves, O. L., & Rezende, K. F. O. (2016). Histopathological effects on gills of Nile tilapia (Oreochromis niloticus, Linnaeus, 1758) exposed to Pb and carbon nanotubes. Microscopy and Microanalysis, 22(6), 1162–1169. https://doi.org/10.1017/S1431927616012009.

    Article  CAS  Google Scholar 

  • Bartram, J., & Ballance, R. (1996). Water quality monitoring: a practical guide to the design of freshwater quality studies and monitoring programmes. Londres: Chapman and Hill.

    Book  Google Scholar 

  • Bergmeyer, H. V. (1974). Phosphatases. Methods of enzymatic analysis (Vol. 2). Academic Press.

  • Bolton, J. L., Stehr, C. M., Boyd, D. T., Burrows, D. G., Tkalin, A. V., & Lishavskaya, T. S. (2004). Organic and trace metal contaminants in sediments and English sole tissues from Vancouver Harbour, Canada. Marine Environmental Research, 57(1–2), 19–36. https://doi.org/10.1016/S0141-1136(03)00058-8.

    Article  CAS  Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999.

    Article  CAS  Google Scholar 

  • Cabral, H. N., Costa, M. J., & Salgado, J. P. (2001). Does the Tagus estuary fish community reflect environmental changes? Climate Research, 18(1–2), 119–126. https://doi.org/10.3354/cr018119.

    Article  Google Scholar 

  • Campos, S. A. B., Dal-Magro, J., & de Souza-Franco, G. M. (2018). Metals in fish of different trophic levels in the area of influence of the AHE Foz do Chapecó reservoir, Brazil. Environmental Science and Pollution Research, 25(26), 26330–26340. https://doi.org/10.1007/s11356-018-2522-0.

    Article  CAS  Google Scholar 

  • Chua, E. M., Flint, N., Wilson, S. P., & Vink, S. (2018). Potential for biomonitoring metals and metalloids using fish condition and tissue analysis in an agricultural and coal mining region. Chemosphere, 202, 598–608. https://doi.org/10.1016/j.chemosphere.2018.03.080.

    Article  CAS  Google Scholar 

  • CONAPESCA. (2017). La Acuacultura en Mexico, retos y oportunidades. XII Foro Internacional de Acuicultura (FIACUI) 2017. https://fiacui.com/2017/Tilapia/Jueves28sep/Copiade05SituaciónactualdelaacuiculturaenMéxico.ComisionadoMarioAguilarSanchez.pdf.

  • Daiwile, A. P., Naoghare, P. K., Giripunje, M. D., Rao, P. D. P., Ghosh, T. K., Krishnamurthi, K., et al. (2015). Correlation of melanophore index with a battery of functional genomic stress indicators for measurement of environmental stress in aquatic ecosystem. Environmental Toxicology and Pharmacology, 39(2), 489–495. https://doi.org/10.1016/j.etap.2014.12.006.

    Article  CAS  Google Scholar 

  • DelMar, E. G., Largman, C., Brodrick, J. W., & Geokas, M. C. (1979). A sensitive new substrate for chymotrypsin. Analytical Biochemistry, 99(2), 316–320. https://doi.org/10.1016/S0003-2697(79)80013-5.

  • Dixon, M., & Webb, E. (1979). Enzymes (3rd ed.). New York: Academic Press.

    Google Scholar 

  • Dos Santos, C. R., Cavalcante, A. L. M., Hauser-Davis, R. A., Lopes, R. M., & Da Costa Mattos, R. D. C. O. (2016). Effects of sub-lethal and chronic lead concentrations on blood and liver ALA-D activity and hematological parameters in Nile tilapia. Ecotoxicology and Environmental Safety, 129, 250–256. https://doi.org/10.1016/j.ecoenv.2016.03.028.

    Article  CAS  Google Scholar 

  • Eisler, R. (2000). Lead. In Handbook of chemical risk assessment (Vol. 1, pp. 201–311). Boca Raton: Lewis Publishers.

    Chapter  Google Scholar 

  • Erlanger, B. F., Kokowsky, N., & Cohen, W. (1961). The preparation and properties of two new chromogenic substrates of trypsin. Archives of Biochemistry and Biophysics, 95(2), 271–278. https://doi.org/10.1016/0003-9861(61)90145-X

  • Escobar, L., Olvera, M., & Puerto, C. (2006). Avances sobre la ecología microbiana del tracto digestivo de la tilapia y sus potenciales implicaciones. In VIII Simposium Internacional de Nutrición Acuícola. Monterrey: Universidad Autónoma de Nuevo León.

    Google Scholar 

  • FAO. (2006). Identidad Perfil. Programa de información de especies acuáticas Oreochromis. http://www.revistaaquatic.com/aquatic/pdf/34_3.pdf.

  • FAO. (2018). Globefish highlights. FAO. https://issuu.com/globefish/docs/globefish_highlights-_issue_4_2018.

  • Flora, S. J. S., Saxena, G., Gautam, P., Kaur, P., & Gill, K. D. (2007). Response of lead-induced oxidative stress and alterations in biogenic amines in different rat brain regions to combined administration of DMSA and MiADMSA. Chemico-Biological Interactions, 170(3), 209–220. https://doi.org/10.1016/j.cbi.2007.08.003.

    Article  CAS  Google Scholar 

  • Flores, J., & Albert, L. A. (2004). Environmental lead in Mexico, 1990-2002. Reviews of Environmental Contamination and Toxicology, 181, 37–109. https://doi.org/10.1007/0-387-21733-9_2

    Article  CAS  Google Scholar 

  • Folk, J. E., & Schirmer, E. W. (1965). Isolation of the zymogen. The Journal of Biological Chemistry, 240(1), 181–192.

    CAS  Google Scholar 

  • Fouz, B., Alcaide, E., Barrera, R., & Amaro, C. (2002). Susceptibility of Nile tilapia (Oreochromis niloticus) to vibriosis due to Vibrio vulnificus biotype 2 (serovar E). Aquaculture, 212(1–4), 21–30. https://doi.org/10.1016/S0044-8486(02)00002-9.

    Article  Google Scholar 

  • Fowler, J., Cohen, L., & Jarvis, P. (1998). Practical statistics for field biology. New York: John Wiley & Sons.

    Google Scholar 

  • Frías-Espericueta, M. G., Voltolina, D., & Osuna-López, J. I. (2003). Acute toxicity of copper, zinc, iron, and manganese and of the mixtures copper-zinc and iron-manganese to white leg shrimp Litopenaeus vannamei postlarvae. Bulletin of Environmental Contamination and Toxicology, 71(1), 68–74. https://doi.org/10.1007/s00128-003-0132-z.

    Article  CAS  Google Scholar 

  • Garza, A., Chávez, H., Vega, R., & Soto, E. (2005). Mecanismos celulares y moleculares de la neurotoxicidad por plomo. Salud Mental, 28(2), 48–58. https://www.redalyc.org/articulo.oa?id=58222805.

  • Halver, J. E., & Handy, R. W. (2002). Fish nutrition (3rd ed.). San Diego: Academic Press.

    Google Scholar 

  • Hashish, E. A., Elgaml, S. A., El-Murr, A., & Khalil, R. (2015). Nephroprotective and antioxidant significance of selenium and α-tocopherol on lead acetate-induced toxicity of Nile tilapia (Oreochromis niloticus). Fish Physiology and Biochemistry, 41(3), 651–660. https://doi.org/10.1007/s10695-015-0035-z.

    Article  CAS  Google Scholar 

  • Hsien-Tsang, S., & Quintanilla, M. (2008). Manual de reproducción y cultivo de tilapia. CENDEPESCA. Centro de Desarrollo de la Pesca y la Acuicultura. https://doi.org/10.1017/CBO9781107415324.004.

  • Klahan, R., Areechon, N., Yoonpundh, R., & Engkagul, A. (2009). Characterization and activity of digestive enzymes in different sizes of Nile tilapia (Oreochromis niloticus L.). Kasetsart Journal - Natural Science, 43(1), 143–153.

    Google Scholar 

  • Kotorman, M., Laszlo, K., Nemcsok, J., & Simon, L. M. (2000). Effects of Cd2+, Cu2+, Pb2+ and Zn2+ on activities of some digestive enzymes in carp (Cyprinus carpio L.). Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 35(9), 1517–1526. https://doi.org/10.1080/10934520009377052.

    Article  Google Scholar 

  • Kunitz, M. (1946). Crystalline soybean trypsin inhibitor. The Journal of General Physiology, 29(3), 291–310.

    Google Scholar 

  • Li, J. S., Li, J. L., & Wu, T. T. (2007). The effects of copper, iron and zinc on digestive enzyme activity in the hybrid tilapia Oreochromis niloticus (L.) x Oreochromis aureus (Steindachner). Journal of Fish Biology, 71(6), 1788–1798. https://doi.org/10.1111/j.1095-8649.2007.01643.x.

    Article  CAS  Google Scholar 

  • Lorenzo - Manzanarez, J. L. (2011). Efecto de tres métodos de cocción sobre el contenido nutricional de la mojarra Tilapia (Oreochromis sp.). Universidad del Papaloapan.

  • Lu, H., Guizzetti, M., & Costa, L. G. (2001). Inorganic lead stimulates DNA synthesis in human astrocytoma cells: role of protein kinase Cα. Journal of Neurochemistry, 78(3), 590–599. https://doi.org/10.1046/j.1471-4159.2001.00434.x.

    Article  CAS  Google Scholar 

  • Maroux, S., Louvard, D., & Baratti, J. (1973). The aminopeptidase from hog intestinal brush border. Biochimica et Biophysica Acta, 321, 282–295.

    Article  CAS  Google Scholar 

  • Martinez, D. S. T., Alves, O. L., & Barbieri, E. (2013). Carbon nanotubes enhanced the lead toxicity on the freshwater fish. Journal of Physics: Conference Series, 429(1). https://doi.org/10.1088/1742-6596/429/1/012043.

  • Matos, L. A., Cunha, A. C. S., Sousa, A. A., Maranhão, J. P. R., Santos, N. R. S., de Gonçalves, M. M. C., et al. (2017). The influence of heavy metals on toxicogenetic damage in a Brazilian tropical river. Chemosphere, 185, 852–859. https://doi.org/10.1016/j.chemosphere.2017.07.103.

    Article  CAS  Google Scholar 

  • Montoya-Mejía, M., García-Ulloa, M., Hernández-Llamas, A., Nolasco-Soria, H., & Rodríguez-González, H. (2017). Digestibility, growth, blood chemistry, and enzyme activity of juvenile Oreochromis niloticus fed isocaloric diets containing animal and plant byproducts. Revista Brasileira de Zootecnia, 46(12), 873–882. https://doi.org/10.1590/S1806-92902017001200001.

    Article  Google Scholar 

  • OCDE. (2012). Fish toxicity testing framework.

    Google Scholar 

  • Pérez-López, A., Núñez-Nogueira, G., Álvarez-González, C. A., De la Rosa-García, S., Uribe-López, M., Quintana, P., & Peña-Marín, E. S. (2020). Effect of salinity on zinc toxicity (ZnCl2 and ZnO nanomaterials) in the mosquitofish (Gambusia sexradiata). Environmental Science and Pollution Research, 1–10. https://doi.org/10.1007/s11356-020-08851-9.

  • Pezo, D., Paredes, A., & Bedayán, A. (1992). Determinación de metales pesados bioacumulables en especies icticas de consumo humano en la. Amazonia Peruana, 4(2), 171–181.

    Google Scholar 

  • Rani, S., Gupta, R. K., & Kanikatehri. (2015). Zinc and cadmium induced changes in the proteolytic and amylolytic enzyme activity in Indian major carps. The Bioscan, 10(2), 613–616.

    CAS  Google Scholar 

  • Rathore, R. M., Kumar, S., & Chakrabarti, R. (2005). Digestive enzyme profile of Cyprinus carpio during ontogenic development. World Aquaculture, 36(2), 37–41.

    Google Scholar 

  • Raz-Guzmán, M. A. (2000). Moluscos. In E. G. De la Lanza, P. S. Hernández, & P. J. L. Carbajal (Eds.), Organismos Indicadores de la Calidad del Agua y de la Contaminación (Bioindicadores) (pp. 265–307). Mexico: Plaza y Valdés.

    Google Scholar 

  • Robyt, J. F., & Whelan, W. J. (1968). Starch and its derivates. In J. A. Radley (Ed.). London: Chapman and Hall.

    Google Scholar 

  • Rungruangsak-Torrissen, K., Moss, R., Andresen, L. H., Berg, A., & Waagbø, R. (2006). Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). Fish Physiology and Biochemistry, 32(1), 7–23. https://doi.org/10.1007/s10695-005-0630-5.

    Article  CAS  Google Scholar 

  • Salazar-Lugo, R. (2009). The current state of knowledge of the concentrations of cadmium, mercury and lead from aquatic organisms of Venezuela. REDVET. Revista Electrónica de Veterinaria, 10(11), 0–15.

  • SEMARNAT. (1996). Límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales. Norma Oficial Mexicana, NOM-001-SEMARNAT-1996 33. Mexico.

  • SEMARNAT. (1999). Especificaciones técnicas para la producción, cuidado y uso de animales de laboratorio. Norma Oficial Mexicana, NOM-062-ZOO-1999 58. Mexico.

  • Sharaf, S., Dighiesh, H., & Eldanasoury, M. A. (2011). Haematological, biochemical and histological alterations in Nile tilapia Oreochromis niloticus exposed to sublethal concentrations of lead. Egypt Journal of Aquatic Biology and Fish, 15(3), 425–439.

    Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2014). Heavy metals toxicity and the environment, 101, 1–30. https://doi.org/10.1007/978-3-7643-8340-4.

  • Toledo-Pérez, J. S., & García-Capote, M. C. (2000). Nutrición y Alimentación de Tilapia Cultivada en América Latina y el Caribe. Avances en Nutrición Acuícola IV, 537, 83–137.

    Google Scholar 

  • Utami, N. R., Widiyaningrum, P., & Iswari, R. S. (2018). Histologic structure of red Nile tilapia fish (Oreochromis niloticus Var.) gill which is exposed to lead acetate. Journal of Physics: Conference Series, 983(1). https://doi.org/10.1088/1742-6596/983/1/012181.

  • Vázquez, S., Pérez, R., Castro, M., González, M., & Velázquez, V. (2006). Macroinvertebrados bénticos bioindicadores de calidad del agua en 1os Ríos Apatlaco y Amacuzac en Morelos, México. Sociedad Mexicana Historia Natural 3a época, 3(1), 1.

    Google Scholar 

  • Vázquez-Silva, G., Castro-Mejía, G., Castro-Barrera, T., Castro-Mejía, J., & De Lara, A. R. (2011). Peces indicadores de la calidad del agua registrados en los ríos. Revista Digital E-Bios, 1(27), 27–34.

    Google Scholar 

  • Versaw, W. K., Cuppett, S. L., Winters, D. D., & Williams, L. E. (1989). An improved colorimetric assay for bacterial lipase in nonfat dry milk. Journal of Food Science, 54(6), 1557–1558. https://doi.org/10.1111/j.1365-2621.1989.tb05159.x.

    Article  CAS  Google Scholar 

  • Villarejo, A. L. (2006). Ecotoxicologico y acccion toxicológica del plomo. Anales de la Real Académia Nacional de Farmacia, 72, 409–422.

    CAS  Google Scholar 

  • Walter, H. E. (1984). Proteinases: methods with hemoglobin, casein and azocoll as substrates. In H. J. Bergmeyer (Ed.), Methods of enzymatic. Analysis. Vol V (pp. 270–277). Verlang Chemie: Weinham.

    Google Scholar 

  • Whiton, A. B. (1975). River ecology. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Zhai, Q., Wang, H., Tian, F., Zhao, J., Zhang, H., & Chen, W. (2017). Dietary Lactobacillus plantarum supplementation decreases tissue lead accumulation and alleviates lead toxicity in Nile tilapia (Oreochromis niloticus). Aquaculture Research, 48(9), 5094–5103. https://doi.org/10.1111/are.13326.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the support given by the biochemistry laboratory of the Academic Division of Biological Sciences of the Juarez Autonomous University of Tabasco (DACBIOL-UJAT) to make possible the realization of this research work. G.N-N recognizes the support provided by the PII SNI-UJAT program.

Code Availability

Not applicable.

Funding

Funding support was provided by the Biochemistry laboratory of the Academic Division of Biological Sciences of the Juarez Autonomous University of Tabasco (DACBIOL-UJAT) and the Programa Institucional de Ingreso al Sistema Nacional de Investigadores (PII SNI-UJAT) through G.N-N.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Álvarez-González, C.A., Martínez-Sánchez, L., Peña-Marín. E.S., Guerrero-Zárate, R., Jesús-Ramírez, F., and Morales-García, V. The first draft of the manuscript was written by Uribe-López, M. and Núñez-Nogueira, G., and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to G. Núñez-Nogueira.

Ethics declarations

After metal exposure, the fish were sacrificed by induced hypothermia accordingly to the NOM-062-ZOO-1999 protocol, approved by The Ministry of Agriculture, Livestock, Rural Development, Fishing and Food (SEMARNAT 1999), and under the established guidelines for the management of experimental animals of the Juarez Autonomous University of Tabasco (AILAD 2010).

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-González, C.A., Martínez-Sánchez, L., Peña-Marín, E.S. et al. Effects on the Growth and Digestive Enzyme Activity in Nile Tilapia Fry (Oreochromis niloticus) by Lead Exposure. Water Air Soil Pollut 231, 477 (2020). https://doi.org/10.1007/s11270-020-04810-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04810-9

Keywords

Navigation