Skip to main content
Log in

Spin and charge fluctuations in the two-band Hubbard model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A model of CuO2 planes of cuprate perovskites, containing dx2−y2 copper orbitals and symmetric combinations of oxygen pσ orbitals, is investigated using the strong coupling diagram technique. This approach allows one to take into account the interactions of carriers with spin and charge fluctuations of all ranges. Derived equations for Green’s function are self-consistently solved for the set of parameters corresponding to hole- and electron-doped cuprates. It is shown that the mentioned interactions lead to the appearance of spin polarons – bound states of carriers with spin excitations, which show themselves as sharp peaks of the density of states and spectral functions at the Fermi level. Hole and electron doping are strongly asymmetric. This, in particular, manifests itself in the antiferromagnetic response for the electron-doped case and in an incommensurate magnetic ordering for hole doping. In the latter case, the incommensurability parameter grows with doping. The double occupancy shows that the electron-doped system retains strong correlations up to the concentration 0.23, while for hole doping the correlations decay rapidly. These results are in agreement with experimental observations in cuprates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 55, 418 (1985)

    ADS  Google Scholar 

  2. V.J. Emery, Phys. Rev. Lett. 58, 2794 (1987)

    ADS  Google Scholar 

  3. C.M. Varma, S. Schmitt-Rink, E. Abrahams, Solid State Commun. 62, 681 (1987)

    ADS  Google Scholar 

  4. P. Horsch, W.H. Stephan, K.v. Szczepanski, M. Ziegler, W. von der Linden, Physica C 162–164, 783 (1989)

    ADS  Google Scholar 

  5. P. Horsch, Helv. Phys. Acta 63, 345 (1990)

    Google Scholar 

  6. G. Dopf, A. Muramatsu, W. Hanke, Phys. Rev. B 41, 9264 (1990)

    ADS  Google Scholar 

  7. R.T. Scalettar, D.J. Scalapino, R.L. Sugar, S.R. White, Phys. Rev. B 44, 770 (1991)

    ADS  Google Scholar 

  8. A. Macridin, M. Jarrell, T. Maier, G.A. Sawatzky, Phys. Rev. B 71, 134527 (2005)

    ADS  Google Scholar 

  9. C. Weber, K. Haule, G. Kotliar, Phys. Rev. B 78, 134519 (2008)

    ADS  Google Scholar 

  10. L. de’ Medici, Xin Wang, M. Capone, A.J. Millis, Phys. Rev. B 80, 054501 (2009)

    ADS  Google Scholar 

  11. C. Weber, K. Haule, G. Kotliar, Phys. Rev. B 82, 125107 (2010)

    ADS  Google Scholar 

  12. Xin Wang, L. de’ Medici, A.J. Millis, Phys. Rev. B 83, 094501 (2011)

    ADS  Google Scholar 

  13. E. Arrigoni, M. Aichhorn, M. Daghofer, W. Hanke, New J. Phys. 11, 055066 (2009)

    ADS  Google Scholar 

  14. S.R. White, D.J. Scalapino, Phys. Rev. B 92, 205112 (2015)

    ADS  Google Scholar 

  15. A. Sherman, Eur. Phys. J. B 89, 91 (2016)

    ADS  Google Scholar 

  16. M.I. Vladimir, V.A. Moskalenko, Theor. Math. Phys. 82, 301 (1990)

    Google Scholar 

  17. W. Metzner, Phys. Rev. B 43, 8549 (1991)

    ADS  Google Scholar 

  18. S. Pairault, D. Sénéchal, A.-M.S. Tremblay, Eur. Phys. J. B 16, 85 (2000)

    ADS  Google Scholar 

  19. A. Sherman, J. Phys.: Condens. Matter 30, 195601 (2018)

    ADS  Google Scholar 

  20. A. Sherman, Eur. Phys. J. B 92, 55 (2019)

    ADS  Google Scholar 

  21. A. Sherman, Phys. Scr. 94, 055802 (2019)

    ADS  Google Scholar 

  22. A. Georges, G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    ADS  Google Scholar 

  23. A.C. Hewson,The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993)

  24. R. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962)

    ADS  Google Scholar 

  25. A.A. Abrikosov, L.P. Gor’kov, I.E. Dzyaloshinskii,Methods of Quantum Field Theory in Statistical Physics (Pergamon Press, New York, 1965)

  26. D. Sénéchal, D. Perez, M. Pioro-Ladrière, Phys. Rev. Lett. 84, 522 (2000)

    ADS  Google Scholar 

  27. J. Hubbard, Proc. R. Soc. A 276, 238 (1963)

    ADS  Google Scholar 

  28. F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)

    ADS  Google Scholar 

  29. Yu. A. Izyumov, Yu. N. Skryabin,Statistical Mechanics of Magnetically Ordered Systems (Consultants Bureau, New York, 1988)

  30. S.G. Ovchinnikov, V.V. Valkov,Hubbard operators in the theory of strongly correlated electrons (Imperial College Press, London, 2004)

  31. A. Sherman, Eur. Phys. J. B 90, 120 (2017)

    ADS  Google Scholar 

  32. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, inNumerical Recipes in Fortran 77: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1995), Chap. 18

  33. M. Jarrell , J.E. Gubernatis, Phys. Rep. 269, 133 (1996)

    ADS  MathSciNet  Google Scholar 

  34. S. Habershon, B.J. Braams, D.E. Manolopoulos, J. Chem. Phys. 127, 174108 (2007)

    ADS  Google Scholar 

  35. S. Schmitt-Rink, C.M. Varma, A.E. Ruckenstein, Phys. Rev. Lett. 60, 2793 (1988)

    ADS  Google Scholar 

  36. G. Martinez, P. Horsch, Int. J. Mod. Phys. B 5, 207 (1991)

    ADS  Google Scholar 

  37. A. Sherman, M. Schreiber, Phys. Rev. B 50, 12887 (1994)

    ADS  Google Scholar 

  38. N.P. Armitage, P. Fournier, R.L. Greene, Rev. Mod. Phys. 82, 2421 (2010)

    ADS  Google Scholar 

  39. H. Matsui, T. Takahashi, T. Sato, K. Terashima, H. Ding, T. Uefuji, K. Yamada, Phys. Rev. B 75, 224514 (2007)

    ADS  Google Scholar 

  40. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    ADS  Google Scholar 

  41. I.H. Inoue, I. Hase, Y. Aiura, A. Fujimori, Y. Haruyama, T. Maruyama, Y. Nishihara, Phys. Rev. Lett. 74, 2539 (1995)

    ADS  Google Scholar 

  42. A. Avella, F. Mancini, Phys. Rev. B 75, 134518 (2007)

    ADS  Google Scholar 

  43. M. Fujita, H. Hiraka, M. Matsuda, M. Matsuura, J.M. Tranquada, S. Wakimoto, G. Xu, K. Yamada, J. Phys. Soc. Jpn. 81, 011007 (2012)

    ADS  Google Scholar 

  44. S.D. Wilson, S. Li, H. Woo, P. Dai, H.A. Mook, C.D. Frost, S. Komiya, Y. Ando, Phys. Rev. Lett. 96, 157001 (2006)

    ADS  Google Scholar 

  45. I. Sega, P. Prelošek, J. Bonča, Phys. Rev. B 68, 054524 (2003)

    ADS  Google Scholar 

  46. M.V. Eremin, I.M. Shigapov, I.M. Eremin, Eur. Phys. J. B 85, 131 (2012)

    ADS  Google Scholar 

  47. A. Sherman, Int. J. Modern Phys. B 26, 1250061 (2012)

    ADS  Google Scholar 

  48. A. Sherman, J. Supercond. Nov. Mag. 26, 343 (2013)

    Google Scholar 

  49. Y.M. Vilk, A.-M.S. Tremblay, J. Phys. I (France) 7, 1309 (1997)

    Google Scholar 

  50. A. Sherman, Phys. Scr. 95, 015806 (2020)

    ADS  Google Scholar 

  51. A. Sherman, Hubbard-Kanamori model: spectral functions, negative electron compressibility, susceptibilities, https://arXiv:2005.09901.

  52. K.M. Stadler, G. Kotliar, A. Weichselbaum, J. von Delft, Ann. Phys. (N.Y.) 405, 365 (2019)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Sherman.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherman, A. Spin and charge fluctuations in the two-band Hubbard model. Eur. Phys. J. B 93, 168 (2020). https://doi.org/10.1140/epjb/e2020-10221-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10221-4

Keywords

Navigation