Skip to main content
Log in

Radical channels of radiation destruction of macrocyclic component of strontium-selective extractants based on ionic liquids

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

To study the radiolysis of the extractant composition based on solutions of dicyclohexano-18-crown-6 (DCH18C6) in ionic liquids containing the bis(trifluoromethylsulfonyl)imide anion (NTf2), we synthesized stereoisomeric DCH18C6•Sr(NTf2)2 complexes as a model of the strontium-containing macrocyclic component of this system and studied the mechanism of their destruction in the solid phase. Three main stages of radiation-chemical transformations were found. At the initial stage of radiolysis after ionization of the complex components, a positive charge is transferred from the macrocycle to the anion, which is induced by the lower ionization potential of NTf2 as compared to the crown ether. This results in the radiation protection of the macrocycle due to the blockage of the polyether ring cleavage, which is observed under radiolysis of “free” DCH18C6. The next stage consists in the accumulation of the —O—•CH—CH2— radicals caused by the reaction of the dissociation products of the NTf2 anion with the crown ether. It intensifies the radiation destruction of the polyether ring. At the final stage, the macrocyclic radicals efficiently scavenge SO2, the molecular product of dissociation of the NTf2 anion, with the formation of sulfonyl-type radicals. The discovered channels of radiation-chemical transformations of the macrocycle in the systems including the NTf2 anion should be considered in the design of new radiation-resistant extractants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Sun, H. Luo, S. Dai, Chem. Rev., 2012, 112, 2100; DOI: https://doi.org/10.1021/cr200193x.

    Article  CAS  Google Scholar 

  2. S. V. Nesterov, Russ. Chem. Rev., 2000, 69, 769; DOI: https://doi.org/10.1070/rc2000v069n09abeh000586.

    Article  CAS  Google Scholar 

  3. E. P. Horwitz, M. L. Dietz, D. E. Fisher, Solv. Extr. Ion Exch., 1991, 9, 1; DOI: https://doi.org/10.1080/07366299108918039.

    Article  CAS  Google Scholar 

  4. V. V. Yakshin, O. M. Vilkova, Dokl. Chem., 2008, 419, 74; DOI: https://doi.org/10.1134/S0012500808030087.

    Article  CAS  Google Scholar 

  5. M. L. Dietz, E. P. Horwitz, R. D. Rogers, Solv. Extr. Ion Exch., 1995, 13, 1; DOI: https://doi.org/10.1080/07366299508918257.

    Article  CAS  Google Scholar 

  6. E. Blasius, W. Klein, U. Schön, J. Radioanal. Nucl. Chem. Art., 1985, 89, 389; DOI: https://doi.org/10.1007/bf02040603.

    Article  CAS  Google Scholar 

  7. K. K. Gupta, P. V. Achuthan, A. Ramanujam, J. N. Mathur, Solv. Extr. Ion Exch., 2003, 21, 53; DOI: https://doi.org/10.1081/sei-120017547.

    Article  CAS  Google Scholar 

  8. S. Dai, Y. H. Ju, C. E. Barnes, J. Chem. Soc., Dalton Trans., 1999, 1201; DOI: https://doi.org/10.1039/A809672D.

  9. V. V. Yakshin, N. A. Tsarenko, A. M. Koshcheev, A. M. Strel’nikiva, A. Yu. Tsivadze, Dokl. Chem., 2013, 450, 173; DOI: https://doi.org/10.1134/s0012500813060062.

    Article  CAS  Google Scholar 

  10. A. V. Ananyev, N. A. Tsarenko, A. M. Strelnikova, A. M. Koshcheev, A. Yu. Tsivadze, Russ. Chem. Bull., 2014, 63, 1308–1311; DOI: https://doi.org/10.1007/s11172-014-0595-6.

    Article  CAS  Google Scholar 

  11. A. Sengupta, P. K. Mohapatra, Supramol. Chem., 2012, 24, 771; DOI: https://doi.org/10.1080/10610278.2012.716840.

    Article  CAS  Google Scholar 

  12. Y. Ao, W. Yuan, T. Yu, J. Peng, J. Li, M. Zhai, L. Zhao, Phys. Chem. Chem. Phys., 2015, 17, 3457; DOI: https://doi.org/10.1039/c4cp04294h.

    Article  CAS  Google Scholar 

  13. L. Yuan, J. Peng, L. Xu, M. Zhai, J. Li, G. Wei, J. Phys. Chem. B, 2009, 113, 8948; DOI: https://doi.org/10.1021/jp9016079.

    Article  CAS  Google Scholar 

  14. A. Chaumont, G. Wipff, J. Phys. Chem. B, 2010, 114, 13773; DOI: https://doi.org/10.1021/jp106441h.

    Article  CAS  Google Scholar 

  15. C. A. Hawkins, S. L. Garvey, M. L. Dietz, Sep. Purif. Technol., 2012, 89, 31; DOI: https://doi.org/10.1016/j.seppur.2011.12.004.

    Article  CAS  Google Scholar 

  16. V. M. Abashkin, D. W. Wester, J. A. Campbell, K. E. Grant, Radiat. Phys. Chem., 1996, 48, 463; DOI: https://doi.org/10.1016/0969-806x(96)00012-6.

    Article  CAS  Google Scholar 

  17. H. Y. Zhou, T. L. Yu, Y. Y. Ao, J. Peng, M. L. Zhai, Acta Phys. Chim. Sin., 2014, 30, 1581; DOI: https://doi.org/10.3866/PKU.WHXB201406061.

    Article  CAS  Google Scholar 

  18. O. A. Zakurdaeva, S. V. Nesterov, N. A. Shmakova, N. A. Sokolova, V. I. Feldman, Radiat. Phys. Chem., 2015, 115, 183; DOI: https://doi.org/10.1016/j.radphyschem.2015.07.004.

    Article  CAS  Google Scholar 

  19. S. V. Nesterov, O. A. Zakurdaeva, T. S. Kurkin, V. I. Feldman, J. Radioanal. Nucl. Chem., 2018, 318, 1901; DOI: https://doi.org/10.1007/s10967-018-6093-9.

    Article  CAS  Google Scholar 

  20. T. Sun, W. Duan, Y. Wang, S. Hu, S. Wang, J. Chen, X. Shen, J. Mol. Struct., 2017, 1148, 206; DOI: https://doi.org/10.1016/j.molstruc.2017.07.048.

    Article  CAS  Google Scholar 

  21. N. Yan, Z. Fei, R. Scopelliti, G. Laurenczy, Y. Kou, P. J. Dyson, Inorg. Chim. Acta, 2010, 363, 504; DOI: https://doi.org/10.1016/j.ica.2009.06.020.

    Article  CAS  Google Scholar 

  22. M. P. Jensen, J. A. Dzielawa, P. Rickert, M. L. Dietz, J. Am. Chem. Soc., 2002, 124, 10664; DOI: https://doi.org/10.1021/ja027476y.

    Article  CAS  Google Scholar 

  23. S. V. Nesterov, O. A. Zakurdaeva, N. A. Sokolova, T. A. Rudakova, V. I. Feldman, Radiat. Phys. Chem., 2019, 164, 108368; DOI: https://doi.org/10.1016/j.radphyschem.2019.108368.

    Article  CAS  Google Scholar 

  24. R. M. Izatt, B. L. Haymore, J. S. Bradshaw, J. J. Christensen, Inorg. Chem., 1975, 14, 3132; DOI: https://doi.org/10.1021/ic50154a059.

    Article  CAS  Google Scholar 

  25. V. V. Yakshin, N. G. Zhukova, N. A. Tsarenko, A. T. Fedorova, B. N. Laskorin, Dokl. Akad. Nauk SSSR, 1983, 273, 160 [Dokl. Chem. (Engl. Transl.), 1983, 273].

    CAS  Google Scholar 

  26. A. J. Pawlak, M. L. Dietz, Separ. Sci. Technol., 2014, 49, 2847; DOI: https://doi.org/10.1080/01496395.2014.946146.

    Article  CAS  Google Scholar 

  27. R. E. A. Dillon, D. F. Shriver, Chem. Mater., 1999, 11, 3296; DOI: https://doi.org/10.1021/cm990376f.

    Article  CAS  Google Scholar 

  28. V. H. Paschoal, L. F. O. Faria, M. C. C. Ribeiro, Chem. Rev., 2017, 117, 7053; DOI: https://doi.org/10.1021/acs.chemrev.6b00461.

    Article  CAS  Google Scholar 

  29. J. H. Hubbell, S. M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficient, Version 1.4; National Institute of Standards and Technology; Gaithersburg, 2004, http://physics.nist.gov/xaamdi (accessed May 07, 2015).

  30. I. A. Shkrob, T. W. Marin, S. D. Chemerisov, J. F. Wishart, J. Phys. Chem. B, 2011, 115, 3872; DOI: https://doi.org/10.1021/jp2003062.

    Article  CAS  Google Scholar 

  31. M. Kajitani, A. Sugimori, N. Sato, K. Seki, H. Inokuchi, Y. Harada, Bull. Chem. Soc. Jpn, 1979, 52, 2199; DOI: https://doi.org/10.1246/bcsj.52.2199.

    Article  CAS  Google Scholar 

  32. I. A. Shkrob, S. D. Chemerisov, J. F. Wishart, J. Phys. Chem. B, 2007, 111, 11786; DOI: https://doi.org/10.1021/jp073619x.

    Article  CAS  Google Scholar 

  33. O. A. Zakurdaeva, S. V. Nesterov, V. I. Feldman, J. Radioanal. Nucl. Chem., 2009, 279, 647; DOI: https://doi.org/10.1007/s10967-008-7345-x.

    Article  CAS  Google Scholar 

  34. S. R. Allayarov, A. I. Mikhailov, Russ. Chem. Bull., 2001, 50, 1198; DOI: https://doi.org/10.1023/A:1014042420113.

    Article  CAS  Google Scholar 

  35. I. A. Shkrob, T. W. Marin, S. D. Chemerisov, J. Hatcher, J. F. Wishart, J. Phys. Chem. B, 2012, 116, 9043; DOI: https://doi.org/10.1021/jp302151c.

    Article  CAS  Google Scholar 

  36. P. B. Ayscough, K. J. Ivin, J. H. O’Donnell, Trans. Faraday Soc., 1965, 61, 1110; DOI: https://doi.org/10.1039/TF9656101110.

    Article  CAS  Google Scholar 

  37. C. Chatgilialoglu, B. C. Gilbert, R. O. C. Norman, J. Chem. Soc., Perkin Trans. 2, 1980, 10, 1429; DOI: https://doi.org/10.1039/p29800001429.

    Article  Google Scholar 

  38. O. A. Zakurdaeva, S. V. Nesterov, V. I. Feldman, High Energy Chem., 2007, 41, 65; DOI: https://doi.org/10.1134/s0018143907020038.

    Article  CAS  Google Scholar 

  39. O. A. Zakurdaeva, S. V. Nesterov, N. A. Sokolova, P. V. Dorovatovskii, Y. V. Zubavichus, V. N. Khrustalev, A. F. Asachenko, G. A. Chesnokov, M. S. Nechaev, V. I. Feldman, J. Phys. Chem. B, 2018, 122, 1992; DOI: https://doi.org/10.1021/acs.jpcb.7b11498.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Nesterov.

Additional information

Based on the materials of the XXI Mendeleev Congress on General and Applied Chemistry (September 9–13, 2019, St. Petersburg, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1329–1335, July, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterov, S.V., Zakurdaeva, O.A., Kochetkova, M.A. et al. Radical channels of radiation destruction of macrocyclic component of strontium-selective extractants based on ionic liquids. Russ Chem Bull 69, 1329–1335 (2020). https://doi.org/10.1007/s11172-020-2906-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2906-4

Key words

Navigation