Skip to main content

Advertisement

Log in

Changes in the mycorrhizal fungal community in host roots over five host generations under low and high phosphorus conditions

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

We tested whether arbuscular mycorrhizal fungal (AMF) community might shift as host plant generations advance under a low phosphorus (P) soil.

Methods

Two greenhouse experiments were conducted using Medicago truncatula as the host plant, six AMF species, and two soil P levels. Experiment 1 assessed changes in AMF composition in roots and soil during five generations of host plant grown in low-P (5.7 mg kg−1) and high-P soil (24.0 mg kg−1). Experiment 2 tested the effects of single AMF species on host plant growth in low-P and high-P soil.

Results

Experiment 1 showed that AMF species composition at the OTU level in roots and soil significantly changed as host generations advanced, and that the pattern of change differed in low-P vs. high-P soil. In low-P soil, the dominant OTU in both roots and soil shifted from OTU-50 (Glomus tortuosum) to OTU-49 (Funneliformis geosporum) as host generations advanced. In high-P soil, the AMF community in roots and soil was dominated by OTU-50 in first two generations but OTU-49 and OTU-50 were co-dominant in the last three generations. Experiment 2 showed that mycorrhizal dependency indices based on plant biomass and P content in plant biomass, and spore numbers were higher in host plants with F. geosporum than other AMF fungal treatments in low-P soil.

Conclusion

As the host M. truncatula grew in a low-P soil over five generations, AMF community in root and soil shifted to a composition with F. geosporum as dominant species who was effective in foraging for P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alguacil M, Diaz-Pereira E, Caravaca F, Fernandez DA, Roldan A (2009) Increased diversity of arbuscular mycorrhizal fungi in a long-term field experiment via application of organic amendments to a semiarid degraded soil. Appl Environ Microbiol 75(13):4254–4263

    CAS  Google Scholar 

  • Alguacil M, Lozano Z, Campoy MJ, Roldan A (2010) Phosphorus fertilisation management modifies the biodiversity of AM fungi in a tropical savanna forage system. Soil Biol Biochem 42(7):1114–1122

    CAS  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2005) Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Microorganisms in soils: roles in genesis and functions (p. 195–212). Berlin: Springer-Verlag

  • Barker D, Blondon F, Datteé Y, Duc G, Essad S, Flament P, Gallusci P, Gdnier G, Guy P, Muel X, Tourneur J, Ddnarid J, Huguet T (1990) Medicago truncatula, a model plant for studying the molecular genetics of the rhizobium-legume symbiosis. Plant Mol Biol Report 8:40–49

    CAS  Google Scholar 

  • Bennett AE, Bever JD (2007) Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 88(1):210–218

    PubMed  Google Scholar 

  • Bever JD (2002) Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant Soil 244(1–2):281–290

    CAS  Google Scholar 

  • Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12(1):13–21

    PubMed  Google Scholar 

  • Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Dominguez L, Sersic A, Leake JR, Read DJ (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419(6905):389–392

    CAS  PubMed  Google Scholar 

  • Bonfante P, Perotto S (1995) Tansley-review no-82 - strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130(1):3–21

    Google Scholar 

  • Boris L, Tomáš L, Manschadi AM (2018) Arbuscular mycorrhizae modify winter wheat root morphology and alleviate phosphorus deficit stress. Plant Soil Environ 64(1):47–52

    Google Scholar 

  • Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64(6):1002–1017

    CAS  PubMed  Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220(4):1108–1115

    PubMed  Google Scholar 

  • Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC (2014) Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Glob Chang Biol 20(12):3646–3659

    PubMed  Google Scholar 

  • Corrêa A, Cruz C, Ferrol N (2015) Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown. Mycorrhiza 25(7):499–515

    PubMed  Google Scholar 

  • Dassen S, Cortois R, Martens H, de Hollander M, Kowalchuk GA, van der Putten WH, de Deyn GB (2017) Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Mol Ecol 26(15):4085–4098

    CAS  PubMed  Google Scholar 

  • Demiranda JCC, Harris PJ (1994) Effects of soil-phosphorus on spore germination and hyphal growth of arbuscular mycorrhizal fungi. New Phytol 128(1):103–108

    Google Scholar 

  • Dobo B, Asefa F, Asfaw Z (2018) Diversity and abundance of arbuscular mycorrhizal fungi under different plant and soil properties in Sidama, southern Ethiopia. Agrofor Syst 92(1):91–101

    Google Scholar 

  • Fernandes RA, Ferreira DA, Saggin-Junior OJ, Sturmer SL, Paulino HB, Siqueira JO, Carbone Carneiro MA (2016) Occurrence and species richness of mycorrhizal fungi in soil under different land use. Can J Soil Sci 96(3):271–280

    Google Scholar 

  • Fitter AH (2006) What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytol 172:3–6

    CAS  PubMed  Google Scholar 

  • Gange AC, Brown VK, Aplin DM (2005) Ecological specificity of arbuscular mycorrhizae: evidence from foliar- and seed-feeding insects. Ecology 86(3):603–611

    Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Google Scholar 

  • Gosling P, Mead A, Proctor M, Hammond JP, Bending GD (2013) Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol 198(2):546–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafson DJ, Casper BB (2006) Differential host plant performance as a function of soil arbuscular mycorrhizal fungal communities: experimentally manipulating co-occurring Glomus species. Plant Ecol 183(2):257–263

    Google Scholar 

  • Hart M (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Google Scholar 

  • Helgason T, Fitter AH (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (phylum Glomeromycota). J Exp Bot 60(9):2465–2480

    CAS  PubMed  Google Scholar 

  • Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90(2):371–384

    Google Scholar 

  • Hetrick BAD (1991) Mycorrhizas and root architecture. Experientia 47(4):355–362

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13(3):394–407

    PubMed  Google Scholar 

  • Jain AVM, Roghothama KG, Sahi SV (2007) Molecular mechanisms of plant adaptation to phosphate deficiency. Plant Breed Rev 29:359–419

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177(3):779–789

    CAS  PubMed  Google Scholar 

  • Jansa J, Erb A, Oberholzer H-R, Smilauer P, Egli S (2014) Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol Ecol 23(8):2118–2135

    CAS  PubMed  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae. Ecol Appl 3(4):749–757

    PubMed  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    CAS  PubMed  Google Scholar 

  • Kawahara A, An GH, Miyakawa S, Sonoda J, Ezawa T (2016) Nestedness in arbuscular mycorrhizal fungal communities along soil pH gradients in early primary succession: acid-tolerant fungi are pH generalists. PLoS One 11(10)

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(6044):880–882

    CAS  PubMed  Google Scholar 

  • Koide RT (2000) Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytol 147(2):233–235

    Google Scholar 

  • Li X, Zeng R, Liao H (2016) Improving crop nutrient efficiency through root architecture modifications. J Integr Plant Biol 58(3):193–202

    PubMed  Google Scholar 

  • Liao H, Rubio G, Yan XL, Cao AQ, Brown KM, Lynch JP (2001) Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 232(1–2):69–79

    CAS  PubMed  Google Scholar 

  • Likar M, Regvar M, Mandic-Mulec I, Stres B, Bothe H (2009) Diversity and seasonal variations of mycorrhiza and rhizosphere bacteria in three common plant species at the Slovenian Ljubljana marsh. Biol Fertil Soils 45(6):573–583

    Google Scholar 

  • Liu M, Sun J, Li Y, Xiao Y (2017) Nitrogen fertilizer enhances growth and nutrient uptake of Medicago sativa inoculated with Glomus tortuosum grown in cd-contaminated acidic soil. Chemosphere 167:204–211

    CAS  PubMed  Google Scholar 

  • Liu SJ, Guo HL, Xu J, Song ZY, Song SR, Tang JJ, Chen X (2018) Arbuscular mycorrhizal fungi differ in affecting the flowering of a host plant under two soil phosphorus conditions. J Plant Ecol 11(4):623–631

    Google Scholar 

  • Lu N, Zhou X, Cui M, Yu M, Zhou J, Qin Y, Li Y (2015) Colonization with arbuscular mycorrhizal fungi promotes the growth of Morus alba L. seedlings under greenhouse conditions. Forests 6(3):734–747

    Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316(5832):1746–1748

    CAS  PubMed  Google Scholar 

  • Martinez-Garcia LB, Pugnaire FI (2011) Arbuscular mycorrhizal fungi host preference and site effects in two plant species in a semiarid environment. Appl Soil Ecol 48(3):313–317

    Google Scholar 

  • McCormack ML, Lavely E, Ma ZQ (2014) Fine-root and mycorrhizal traits help explain ecosystem processes and responses to global change. New Phytol 204(3):455–458

    PubMed  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115(3):495–501

    PubMed  Google Scholar 

  • Menzel A, Hempel S, Davison J, Moora M, Pysek P, Rillig MC, Zobel M, Kuhn I (2018) Widely distributed native and alien plant species differ in arbuscular mycorrhizal associations and related functional trait interactions. Ecography 41(9):1583–1593

    Google Scholar 

  • Morton JB (1988) Taxonomy of VA mycorrhizal fungi - classification, nomenclature, and identification. Mycotaxon 32:267–324

    Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411

    CAS  PubMed  Google Scholar 

  • Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS (2013) Responses of root architecture development to low phosphorus availability: a review. Ann Bot 112(2):391–408

    CAS  PubMed  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188(1):223–241

    PubMed  Google Scholar 

  • Ortas I, Sari N, Akpinar Ç, Yetisir H (2011) Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Sci Hortic 128(2):92–98

    CAS  Google Scholar 

  • Pearson JN, Jakobsen I (1993) The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labeling with p-32 and p-33. New Phytol 124(3):489–494

    CAS  Google Scholar 

  • Pivato B, Mazurier S, Lemanceau P, Siblot S, Berta G, Mougel C, van Tuinen D (2007) Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytol 176(1):197–210

    CAS  PubMed  Google Scholar 

  • Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178(2):253–266

  • Ryan MH, Graham JH (2018) Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol 220(4):1092–1107

    PubMed  Google Scholar 

  • Schreiner RP, Mihara KL (2009) The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia 101(5):599–611

    PubMed  Google Scholar 

  • Schultz CJ, Kochian LV, Harrison MJ (2010) Genetic variation for root architecture, nutrient uptake and mycorrhizal colonisation in Medicago truncatula accessions. Plant Soil 336(1–2):113–128

    CAS  Google Scholar 

  • Seifert EK, Bever JD, Maron JL (2009) Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology 90(4):1055–1062

    PubMed  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104(1):1–13

    PubMed  Google Scholar 

  • Sulieman S, Van Ha C, Schulze J, Tran LSP (2013) Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. J Exp Bot 64(10):2701–2712

    CAS  PubMed  PubMed Central  Google Scholar 

  • van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79(6):2082–2091

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396(6706):69–72

    Google Scholar 

  • Verbruggen E, Kiers ET (2010) Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl 3(5–6):547–560

    PubMed  PubMed Central  Google Scholar 

  • Waller LP, Hahn PG, Maron JL, Lekberg Y (2018) Trait differences in responses to arbuscular mycorrhizal fungi are stronger and more consistent than fixed differences among populations of Asclepias speciosa. Am J Bot 105(2):207–214

    PubMed  Google Scholar 

  • Wang M, Jiang P (2015) Colonization and diversity of AM fungi by morphological analysis on medicinal plants in Southeast China. Sci World J 2015:753842–753842

    Google Scholar 

  • Wardle DA (1999) Is "sampling effect" a problem for experiments investigating biodiversity-ecosystem function relationships? Oikos 87(2):403–407

    Google Scholar 

  • Xu H, Lu Y, Zhu X (2016) Effects of arbuscular mycorrhiza on osmotic adjustment and photosynthetic physiology of maize seedlings in black soils region of Northeast China. Braz Arch Biol Technol 59

  • Xu S, Zhang J, Rong J, Ma L, Tian L, Tian C (2017) Composition shifts of arbuscular mycorrhizal fungi between natural wetland and cultivated paddy field. Geomicrobiol J 34(10):834–839

    Google Scholar 

  • Xu J, Liu SJ, Song SR, Guo HL, Tang JJ, Yong JWH, Ma YD, Chen X (2018a) Arbuscular mycorrhizal fungi influence decomposition and the associated soil microbial community under different soil phosphorus availability. Soil Biol Biochem 120:181–190

    CAS  Google Scholar 

  • Xu H, Lu Y, Tong S (2018b) Effects of arbuscular mycorrhizal fungi on photosynthesis and chlorophyll fluorescence of maize seedlings under salt stress. Emir J Food Agric 30(3):199–204

    Google Scholar 

  • Yang HS, Zang YY, Yuan YG, Tang JJ, Chen X (2012) Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata. BMC Evol Biol 12:50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin J, Zhou M, Lin Z, Li QQ, Zhang Y-Y, Hosken D (2019) Transgenerational effects benefit offspring across diverse environments: a meta-analysis in plants and animals. Ecol Lett 22(11):1976–1986

  • Yu Z, Xu J, Liu S, Hu L, Ren M, Liu Y, Tang J, Chen X (2020) Adult plants facilitate their conspecific seedlings by enhancing arbuscular mycorrhizae in a saline soil. Plant Soil 447(1–2):333–345

    CAS  Google Scholar 

  • Zhang Q, Yang RY, Tang JJ, Yang HS, Hu SJ, Chen X (2010) Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS One 5(8)

Download references

Funding

This research was supported by the National Key Research and Development Program of China (No. 2016YFC0502703–4) and the National Natural Science Foundation of China (Nos. 31,470,483, and 31,570,411).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianjun Tang or Xin Chen.

Additional information

Responsible Editor: Janusz J. Zwiazek

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Xu, J., Huang, H. et al. Changes in the mycorrhizal fungal community in host roots over five host generations under low and high phosphorus conditions. Plant Soil 456, 27–41 (2020). https://doi.org/10.1007/s11104-020-04694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04694-y

Keywords

Navigation