Skip to main content
Log in

Laser Formation of Colloidal Sulfur- and Carbon-Doped Silicon Nanoparticles

  • LASER PHYSICS AND LASER OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Unique sulfur- and carbon- doped silicon nanoparticles, as well as partially oxidized, are obtained by nanosecond laser ablation of silicon in liquid carbon disulfide. Detailed structural, chemical, and optical characterization of these particles was performed by scanning and transmission electron microscopy, IR spectroscopy, energy dispersive X-ray spectroscopy, and Raman scattering spectroscopy. It is shown that the sulfur concentration in particles is on the order of 1 at %, owing to which they demonstrate a considerable absorption in the mid-IR region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. O’Farrell, A. Houlton, and B. R. Horrocks, Int. J. Nanomed. 1, 451 (2006). https://doi.org/10.2147/nano.2006.1.4.451

    Article  Google Scholar 

  2. L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad, Clin. Pharm. Ther. 83, 761 (2008). https://doi.org/10.1038/sj.clpt.6100400

    Article  Google Scholar 

  3. V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, Nanotechnology 16, 1221 (2005). https://doi.org/10.1088/0957-4484/16/8/041

    Article  ADS  Google Scholar 

  4. L. L. Vatta, R. D. Sanderson, and K. R. Koch, Pure Appl. Chem. 78, 1793 (2006). https://doi.org/10.1351/pac200678091793

    Article  Google Scholar 

  5. Avaneesh Pandey. https://www.ibtimes.com/cure-cancer-coating-cells-nanoparticles-may-boost-drug-efficiency-2511271.

  6. Yu. V. Gulyaev, V. A. Cherepenin, V. A. Vdovin, I. V. Taranov, A. A. Yaroslavov, V. P. Kim, and G. B. Khomutov, J. Commun. Technol. Electron. 60, 1097 (2015). https://doi.org/10.7868/S0033849415100034

    Article  Google Scholar 

  7. N. Kamaly and A. D. Miller, Int. J. Mol. Sci. 11, 1759 (2010). https://doi.org/10.3390/ijms11041759

    Article  Google Scholar 

  8. K. Niska, E. Zielinska, M. W. Radomski, and I. Inkielewicz-Stepniak, Chem.-Biol. Interact. 295, 38 (2018). https://doi.org/10.1016/j.cbi.2017.06.018

    Article  Google Scholar 

  9. A. Yadav, V. Prasad, A. A. Kathe, S. Raj, D. Yadav, C. Sundaramoorthy, and N. Vigneshwaran, Bull. Mater. Sci. 29, 641 (2006). https://doi.org/10.1007/s12034-006-0017-y

    Article  Google Scholar 

  10. A. Becheri, M. Dürr, P. L. Nostro, and P. Baglioni, J. Nanopart. Res. 10, 679 (2008). https://doi.org/10.1007/s11051-007-9318-3

    Article  ADS  Google Scholar 

  11. I. Rezić, T. Haramina, and T. Rezić, in Food Packaging, Ed. by A. M. Grumezescu (Academic, New York, 2017), p. 497. https://doi.org/10.1016/B978-0-12-804302-8.00015-7

    Book  Google Scholar 

  12. Y. N. Slavin, J. Asnis, U. O. Häfeli, and H. Bach, J. Nanobiotechnol. 15, 65 (2017). https://doi.org/10.1186/s12951-017-0308-z

  13. A. Nastulyavichus, S. Kudryashov, N. Smirnov, I. Saraeva, A. Rudenko, E. Tolordava, A. Ionin, Y. Romanova, and D. Zayarny, Appl. Surf. Sci. 469, 220 (2019). https://doi.org/10.1016/j.apsusc.2018.11.011

    Article  ADS  Google Scholar 

  14. A. A. Ionin, A. K. Ivanova, R. A. Khmel’nitskii, Y. V. Klevkov, S. I. Kudryashov, A. O. Levchenko, A. A. Nastulyavichus, A. A. Rudenko, I. N. Saraeva, N. A. Smirnov, and D. A. Zayarny, Laser Phys. Lett. 15, 015604 (2017). https://doi.org/10.1088/1612-202X/aa897f

    Article  ADS  Google Scholar 

  15. N. A. Smirnov, S. I. Kudryashov, A. A. Nastulyavichus, A. A. Rudenko, I. N. Saraeva, E. R. Tolordava, S. A. Gonchukov, Y. M. Romanova, A. A. Ionin, and D. A. Zayarny, Laser Phys. Lett. 15, 105602 (2018). https://doi.org/10.1088/1612-202X/aad853

    Article  ADS  Google Scholar 

  16. Z. F. Li and E. Ruckenstein, Nano Lett. 4, 1463 (2004). https://doi.org/10.1021/nl0492436

    Article  ADS  Google Scholar 

  17. P. J. Kempen, S. Greasley, K. A. Parker, J. L. Campbell, H. Y. Chang, J. R. Jones, R. Sinclair, S. S. Gambhir, and J. V. Jokerst, Theranostics 5, 631 (2015). https://doi.org/10.7150/thno.11389

    Article  Google Scholar 

  18. D. K. Chatterjee, L. S. Fong, and Y. Zhang, Adv. Drug Deliv. Rev. 60, 1627 (2008). https://doi.org/10.1016/j.addr.2008.08.003

    Article  Google Scholar 

  19. E. Secret, M. Maynadier, A. Gallud, A. Chaix, E. Bouffard, M. Gary-Bobo, N. Marcotte, O. Mongin, K. El Cheikh, V. Hugues, and M. Auffan, Adv. Mater. 26, 7643 (2014). https://doi.org/10.1002/adma.201403415

    Article  Google Scholar 

  20. D. Brevet, M. Gary-Bobo, L. Raehm, S. Richeter, O. Hocine, K. Amro, B. Loock, P. Couleaud, C. Frochot, A. Morere, and P. Maillard, Chem. Commun. 12, 1475 (2009). https://doi.org/10.1039/B900427K

    Article  Google Scholar 

  21. A. Bapat, C. Anderson, C. R. Perrey, C. B. Carter, S. A. Campbell, and U. Kortshagen, Plasma Phys. Control. Fusion. 46 (12B), B97 (2004). https://doi.org/10.1088/0741-3335/46/12B/009

    Article  Google Scholar 

  22. M. Ge, J. Rong, X. Fang, A. Zhang, Y. Lu, and C. Zhou, Nano Res. 6, 174 (2013). https://doi.org/10.1007/s12274-013-0293-y

    Article  Google Scholar 

  23. F. I. Chowdhury, A. Alnuaimi, N. El-Atab, M. Nayfeh, and A. Nayfeh, Solar Energy 125, 332 (2016). https://doi.org/10.1016/j.solener.2015.12.030

    Article  ADS  Google Scholar 

  24. N. Rajput, Int. J. Adv. Eng. Technol. 7, 1806 (2015).

    Google Scholar 

  25. T. Tsuji, K. Iryo, N. Watanabe, and M. Tsuji, Appl. Surf. Sci. 202, 80 (2002). https://doi.org/10.1016/S0169-4332(02)00936-4

    Article  ADS  Google Scholar 

  26. M. Dell-Aglio, R. Gaudiuso, O. de Pascale, and A. de Giacomo, Appl. Surf. Sci. 348, 4 (2015). https://doi.org/10.1016/j.apsusc.2015.01.082

    Article  Google Scholar 

  27. S. I. Kudryashov, A. A. Samokhvalov, A. A. Nastulyavichus, I. N. Saraeva, V. Y. Mikhailovskii, A. A. Ionin, and V. P. Veiko, Materials 12, 562 (2019). https://doi.org/10.3390/ma12040562

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 19-32-50047 and 18-29-20022), Program 14P of the Presidium of the Russian Academy of Sciences, and a grant of the Ministry of Science and Higher Education of the Russian Federation for the ITMO University (project no. 074-U01, position S.I.K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nastulyavichus.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nastulyavichus, A.A., Kudryashov, S.I., Smirnov, N.A. et al. Laser Formation of Colloidal Sulfur- and Carbon-Doped Silicon Nanoparticles. Opt. Spectrosc. 128, 897–901 (2020). https://doi.org/10.1134/S0030400X20070140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20070140

Keywords:

Navigation