Skip to main content
Log in

Determination of the Point Spread Function of a Computer-Generated Lens Formed by a Phase Light Modulator

  • APPLIED OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

In various fields of photonics, there is a tendency to pass from elements of physical optics to elements of flat optics, primarily, due to a decrease in the dimensions of instruments and devices. Most frequently, spatial light modulators are used to efficiently and immediately simulate flat phase elements. In this work, we investigate the possibility of replacing a lens optical system with a computer-generated lens. The novelty of the work is a comparative analysis of the point spread functions of the lens optical system and the computer-generated lens. Numerous experiments confirm the obtained result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. N. Kompanets and A. L. Andreev, Quantum Electron. 47, 294 (2017). https://doi.org/10.1070/QEL16293

    Article  ADS  Google Scholar 

  2. V. Y. Venediktov, G. E. Nevskaya, and M. G. Tomilin, Opt. Spectrosc. 111, 113 (2011). https://doi.org/10.1134/S0030400X11070216

    Article  ADS  Google Scholar 

  3. S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, Appl. Opt. 54, 8587 (2015). https://doi.org/10.1364/AO.54.008587

    Article  ADS  Google Scholar 

  4. S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, Proc. SPIE 8949, 894913 (2014). https://doi.org/10.1117/12.2040723

    Article  Google Scholar 

  5. T. Haist and W. Osten, J. Micro/Nanolith. MEMS MOEMS 14, 041310 (2015). https://doi.org/10.1117/1.JMM.14.4.041310

    Article  Google Scholar 

  6. M. S. Kovalev, G. K. Krasin, S. B. Odinokov, A. B. Solomashenko, and E. Yu. Zlokazov, Opt. Express 27, 1563 (2019). https://doi.org/10.1364/OE.27.001563

    Article  ADS  Google Scholar 

  7. M. Žurauskas, I. M. Dobbie, R. M. Parton, M. A. Phillips, A. Gohler, I. Davis, and M. J. Booth, Optica 6, 370 (2019). https://doi.org/10.1364/OPTICA.6.000370

    Article  ADS  Google Scholar 

  8. P. A. Ruchka, N. M. Verenikina, I. V. Gritsenko, E. Yu. Zlokazov, M. S. Kovalev, G. K. Krasin, S. B. Odinokov, and N. G. Stsepuro, Opt. Spectrosc. 127, 618 (2019). https://doi.org/10.1134/S0030400X19100230

    Article  ADS  Google Scholar 

  9. A. A. Vasil’ev, I. N. Kompanets, and A. V. Parfenov, Sov. J. Quantum Electron. 13, 689 (1983).

    Article  ADS  Google Scholar 

  10. E. Yu. Zlokazov, S. B. Odinokov, N. M. Verenikina, and S. S. Donchenko, Chin. Opt. Lett. 15, 040903 (2017). https://doi.org/10.3788/COL201715.040903

    Article  ADS  Google Scholar 

  11. E. Yu. Zlokazov, Jpn. J. Appl. Phys. 58, SKKD04 (2019). https://doi.org/10.7567/1347-4065/ab2f6c

  12. D. S. Goncharov, E. Yu. Zlokazov, E. K. Petrova, N. M. Ponomarev, and R. S. Starikov, Bull. Lebedev Phys. Inst. 46, 126 (2019). https://doi.org/10.3103/S1068335619040055

    Article  ADS  Google Scholar 

  13. D. Engström, M. Persson, J. Bengtsson, and M. Goksor, Opt. Express 21, 16086 (2013). https://doi.org/10.1364/OE.21.016086

    Article  ADS  Google Scholar 

  14. C. Kohler, F. Zhang, and W. Osten, Appl. Opt. 48, 4003 (2009). https://doi.org/10.1364/AO.48.004003

    Article  ADS  Google Scholar 

  15. J. L. Martinez Fuentes, E. J. Fernández, P. M. Prieto, and P. Artal, Opt. Express 24, 14159 (2016). https://doi.org/10.1364/OE.24.014159

    Article  ADS  Google Scholar 

  16. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, Cambridge, 1999).

    Book  Google Scholar 

  17. A. Marecnal and M. Franson, Diffraction Structure des Images (Paris, 1960).

    Google Scholar 

  18. R. R. Shannon and J. C. Wyant, Applied Optics and Optical Engineering (Academic, New York, 1980).

    Google Scholar 

  19. M. Bass, Handbook of Optics (McGraw-Hill, New York, 1995).

    Google Scholar 

  20. G. M. Mosyagin, V. B. Nemtinov, and E. N. Lebedev, Theory of Optoelectronic Systems, The School-Book (Mashinostroenie, Moscow, 1990) [in Russian].

    Google Scholar 

  21. V. M. Domnenko, M. V. Bursov, and T. V. Ivanova, Optical Imaging Modeling (NIU ITMO, St. Petersburg, 2011) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kovalev.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stsepuro, N.G., Krasin, G.K., Kovalev, M.S. et al. Determination of the Point Spread Function of a Computer-Generated Lens Formed by a Phase Light Modulator. Opt. Spectrosc. 128, 1036–1040 (2020). https://doi.org/10.1134/S0030400X20070231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20070231

Keywords:

Navigation