Skip to main content
Log in

A Study on the Sintering of a Mixed Powder Containing Alumina and Aluminum for Control of Volume Shrinkage during Sintering

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

We studied the sintering of mixed powders in which either alumina or aluminum was coated with polysiloxane derived from aqueous slurry in order to avoid using organic solvent and to confirm the change of sintering process by coating only one of the powders. We found that similar characteristics of porous alumina can be obtained by sintering the mixed powder derived from an aqueous slurry and the mixed powder derived from an ethanol slurry. Coating the alumina powder with polysiloxane prevented the volume expansion of samples during sintering, thus increasing the density of the porous alumina and wettability between alumina and aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. J.S. Woyansky, C.E. Scott, and W.P. Minnear, Processing of Porous Ceramics, Am. Ceram. Soc. Bull., 1992, 71, p 1674–1682

    Google Scholar 

  2. L.M. Sheppard, Porous Ceramics: Processing and Application, Ceram. Trans., 1993, 31, p 3–25

    CAS  Google Scholar 

  3. S.B. Bhaduri, Science and Technology of Ceramic Foams, Adv. Perform. Mater., 1994, 1, p 205–220

    Article  CAS  Google Scholar 

  4. P. Colombo and M. Modesti, Silicon Oxycarbide Ceramic Foams from a Preceramic Polymer, J. Am. Ceram. Soc., 1999, 82, p 573–578

    Article  CAS  Google Scholar 

  5. Y.W. Kin, K.H. Lee, S.H. Lee, and C.B. Park, Fabrication of Porous Silicon Carbide Ceramics by Foaming Polymer Liquid and Compression Molding, J. Ceram. Soc. Jpn., 2003, 111, p 863–864

    Article  Google Scholar 

  6. D.D. Jayaseelan, N. Kondo, M.E. Brito, and T. Ohji, High-Strength Porous Alumina Ceramics by the Pulse Electric Current Sintering Technique, J. Am. Ceram. Soc., 2002, 85, p 267–269

    Article  Google Scholar 

  7. D.J. Green and P. Colombo, Cellular Ceramics: Intriguing Structures, Novel Properties, and Innovative Applications, MRS Bull., 2003, 28, p 296–300

    Article  CAS  Google Scholar 

  8. T.F. Baumann, A.E. Gash, S.C. Chinn, A.M. Sawvel, R.S. Maxwell, and J.H. Satcher, Synthesis of High-Surface-Area Alumina Aerogels without the Use of Alkoxide Precursors, Chem. Mater., 2005, 17, p 395–401

    Article  CAS  Google Scholar 

  9. A. Shimamura, M. Fukushima, M. Hotta, T. Ohji, and N. Kondo, Fabrication and Characterization of Porous Alumina with Denser Surface Layer by Direct Foaming, J. Ceram. Soc. Jpn., 2017, 125, p 7–11

    Article  CAS  Google Scholar 

  10. T. Ohji and M. Fukushima, Macro-porous Ceramics: Processing and Properties, Int. Mater. Rev., 2012, 57, p 115–131

    Article  CAS  Google Scholar 

  11. S.C. Nanjangud, R. Brezny, and D.J. Green, Strength and Young’s Modulus Behavior of a Partially Sintered Porous Alumina, J. Am. Ceram. Soc., 1995, 78, p 266–268

    Article  CAS  Google Scholar 

  12. D. Hardy and D.J. Green, Mechanical Properties of a Partially Sintered Alumina, J. Eur. Ceram. Soc., 1995, 15, p 769–775

    Article  CAS  Google Scholar 

  13. N. Claussen, S.X. Wu, and D. Holz, Reaction Bonding of Aluminum Oxide (RBAO) Composites: Processing, Reaction Mechanisms and Properties, J. Eur. Ceram. Soc., 1994, 14, p 97–109

    Article  CAS  Google Scholar 

  14. D.C.C. Lam, F.F. Lange, and A.G. Evans, Mechanical Properties of Partially Dense Alumina Produced from Powder Compacts, J. Am. Ceram. Soc., 1994, 77, p 2113–2117

    Article  CAS  Google Scholar 

  15. C. Kawai and A. Yamakawa, Effect of Porosity and Microstructure on the Strength of Si3N4: Designed Microstructure for High Strength, High Thermal Shock Resistance, and Facile Machining, J. Am. Ceram. Soc., 1997, 80, p 2705–2708

    Article  CAS  Google Scholar 

  16. G. Li, Z. Jiang, and L. Zhang, Strengthening of Porous Al2O3 Ceramics Through Nanoparticle Addition, Nanostruct. Mater., 1997, 80, p 749–754

    Article  Google Scholar 

  17. T. Ostrowski, A. Ziegler, R.K. Bordia, and J. Rodel, Evolution of Young’s Modulus, Strength, and Microstructure during Liquid-Phase Sintering, J. Am. Ceram. Soc., 1998, 81, p 1852–1860

    Article  CAS  Google Scholar 

  18. S.T. Oh, K.I. Tajima, M. Ando, and T. Ohji, Strengthening of Porous Alumina by Pulse Electric Current Sintering and Nanocomposite Processing, J. Am. Ceram. Soc., 2000, 83, p 1314–1316

    Article  CAS  Google Scholar 

  19. Z.Y. Deng, T. Fukasawa, M. Ando, G.J. Zhang, and T. Ohji, Microstructure and Mechanical Properties of Porous Alumina Ceramics Fabricated by the Decomposition of Aluminum Hydroxide, J. Am. Ceram. Soc., 2001, 84, p 2638–2644

    Article  CAS  Google Scholar 

  20. C. Peko, B. Groth, and I. Nettleship, The Effect of Polyvinyl Alcohol on the Microstructure and Permeability of Freezecast Alumina, J. Am. Ceram. Soc., 2010, 93, p 115–120

    Article  Google Scholar 

  21. Z.Y. Liu, N.H. Loh, S.B. Tor, K.A. Khor, Y. Murakoshi, and R. Maeda, Binder System for Micropowder Injection Molding, Mater. Lett., 2001, 48, p 31–38

    Article  CAS  Google Scholar 

  22. J. Tatami, G. Tsuchigami, and M. Iijima, Fabrication of Porous Alumina Ceramics Using Basic Aluminum Lactate as an Inorganic Binder, J. Soc. Powder. Technol. Jpn., 2016, 53, p 132–136

    Article  CAS  Google Scholar 

  23. K. Kita and N. Kondo, A Novel Method for Joining Aluminum Foil and Silicon Nitride by Polysiloxane Coating, J. Ceram. Soc. Jpn., 2017, 125, p 543–546

    Article  CAS  Google Scholar 

  24. K. Kita and N. Kondo, A Novel Method for Joining Aluminum Foil and Alumina by Polysiloxane Coating, J. Ceram. Soc. Jpn., 2017, 125, p 846–849

    Article  CAS  Google Scholar 

  25. K. Kita and N. Kondo, Sintering of Porous Alumina Using an Alumina Slurry Containing Aluminum and Polysiloxane, Int. J. Appl. Ceram. Technol., 2020, 17, p 311–319

    Article  CAS  Google Scholar 

  26. H. Li, J.B. Li, L.Z. Sun, and Z.G. Wang, Modification of the Residual Stress State in a SiCp/6061Al Composite by Low-Temperature Treatment, Compos. Sci. Technol., 1997, 57, p 165–172

    Article  CAS  Google Scholar 

  27. A.M. Wilson, G. Zank, K. Eguchi, W. Xing, B. Yates, and J.R. Dahn, Polysiloxane Pyrolysis, Chem. Mater., 1997, 9, p 1601–1606

    Article  CAS  Google Scholar 

  28. T. Okutani, Utilization of Silica in Rice Hulls as Raw Materials for Silicon Semiconductors, J. Metal. Mater. Miner., 2009, 19, p 51–59

    CAS  Google Scholar 

  29. M. Narisawa, Silicone Resin Applications for Ceramic Precursors and Composites, Materials, 2010, 3, p 3518–3536

    Article  CAS  Google Scholar 

  30. P.D.D. Rodrigo and P. Boch, High Purity Mullite Ceramics by Reaction Sintering, Int. J. High Technol. Ceram., 1985, 1, p 3–30

    Article  CAS  Google Scholar 

  31. D. Suttor, H.J. Kleebe, and G. Zieger, Formation of Mullite from Filled Siloxanes, J. Am. Ceram. Soc., 1997, 80, p 2541–2548

    Article  CAS  Google Scholar 

  32. L.A. Xue and I.W. Chen, Low-Temperature Sintering of Alumina with Liquid-Forming Additives, J. Am. Ceram. Soc., 1991, 74, p 2011–2013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank The Amada Foundation for supporting part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken’ichiro Kita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kita, K., Kondo, N. & Hotta, M. A Study on the Sintering of a Mixed Powder Containing Alumina and Aluminum for Control of Volume Shrinkage during Sintering. J. of Materi Eng and Perform 29, 5594–5601 (2020). https://doi.org/10.1007/s11665-020-05078-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05078-0

Keywords

Navigation