Skip to main content
Log in

Study on the Friction Behaviors of Copper Nanowires in Ionic Liquids under External Voltages

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of copper nanowires (Cu NWs) and ionic liquid (1-butyl-3-methylimidazolium perchlorate, in short [BMIM] [ClO4]) on the tribological properties of ionic liquid under external voltages were explored using friction tests in this paper. The results showed that the ionic liquid with 0.15 wt.% Cu NWs after 60 days exhibited better lubricating property at a low voltage of 0.5 V. The worn surfaces characterized by SEM and XPS illustrated that the existence of the Cu2O could increase wear of friction pairs when Cu particles were oxidized. How the different forms of copper affect the lubrication of ionic liquid under external voltages were further discussed. This work provides a new thought of using metal ions to improve the lubrication performance of ionic liquids under external voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.H. Chen, Y.Q. Xia, Y.C. Hu, and B.Y. Hou, Tribological Performance and Conductive Capacity of Ag Coating Under Boundary Lubrication, Tribol. Int., 2017, 110, p 161–172

    Article  Google Scholar 

  2. Z.F. Cao, Y.Q. Xia, L.H. Liu, and X. Feng, Study on the Conductive and Tribological Properties of Copper Sliding Electrical Contacts Lubricated by Ionic Liquids, Tribol. Int., 2019, 130, p 27–35

    Article  CAS  Google Scholar 

  3. W. Huang, L.L. Kong, and X.L. Wang, Electrical Sliding Friction Lubricated with Ionic Liquids, Tribol. Lett., 2017, 65(1), p 17

    Article  Google Scholar 

  4. G.X. Xie, D. Guo, and J.B. Luo, Lubrication Under Charged Conditions, Tribol. Int., 2015, 84, p 22–35

    Article  Google Scholar 

  5. F. He, X. Yang, Z.L. Bian, G.X. Xie, D. Guo, and J.B. Luo, In-Plane Potential Gradient Induces Low Frictional Energy Dissipation During the Stick-Slip Sliding on the Surfaces of 2D Materials, Small, 2019, 15(49), p 1904613

    Article  CAS  Google Scholar 

  6. H.Z. Wang, D. Qiao, S.W. Zhang, D.P. Feng, and J.J. Lu, Tribological Performance and Lubrication Mechanism of Alkylimidazolium Dialkyl Phosphates Ionic Liquids as Lubricants for Si3N4-Ti3SiC2 Contacts, J. Nanomater., 2014, 2014, art. no. 548658

  7. Y.J. Wang, G.L. Zhang, W.Z. Wang, L.N. Si, and F.B. Liu, Controlled Friction Behaviors of Gradient Porous Cu-Zn Composites Storing Ionic Liquids Under Electric Field, AIP Adv., 2018, 8(11), p 115020

    Article  Google Scholar 

  8. W. Wang, G.X. Xie, and J.B. Luo, Black Phosphorus as a New Lubricant, Friction, 2018, 6(1), p 116–142

    Article  CAS  Google Scholar 

  9. G.X. Xie, S.H. Liu, D. Guo, Q. Wang, and J.B. Luo, Investigation of the Running-In Process and Friction Coefficient Under the Lubrication of Ionic Liquid/Water Mixture, Appl. Surf. Sci., 2009, 255(12), p 6408–6414

    Article  CAS  Google Scholar 

  10. H. Li, M.W. Rutland, and R. Atkin, Ionic Liquid Lubrication: Influence of Ion Structure, Surface Potential and Sliding Velocity, Phys. Chem. Chem. Phys., 2013, 15(35), p 14616–14623

    Article  CAS  Google Scholar 

  11. W.C. Barnhill, J. Qu, H.M. Luo, H.M. Meyer, C. Ma, M.F. Chi, and B.L. Papke, Phosphonium-Organophosphate Ionic Liquids as Lubricant Additives: Effects of Cation Structure on Physicochemical and Tribological Characteristics, ACS Appl. Mater. Int., 2014, 6(24), p 22585–22593

    Article  CAS  Google Scholar 

  12. R. Ma, W.M. Li, Q. Zhao, D.D. Zheng, and X.B. Wang, In Situ Synthesized Phosphate-Based Ionic Liquids as High-Performance Lubricant Additives, Tribol. Lett., 2019, 67(2), p 60

    Article  Google Scholar 

  13. Y. Kondo, S. Yagi, T. Koyama, R. Tsuboi, and S. Sasaki, Lubricity and Corrosiveness of Ionic Liquids for Steel-on-Steel Sliding Contacts, Proc. Inst. Mech. Eng. J-J. Eng., 2012, 226(J11), p 991–1006

    Article  CAS  Google Scholar 

  14. D.F. Miranda, C. Urata, B. Masheder, G.J. Dunderdale, M. Yagihashi, and A. Hozumi (2014) Physically and Chemically Stable Ionic Liquid-Infused Textured Surfaces Showing Excellent Dynamic Omniphobicity, Apl Mater., 2014, 2(5), p 056108

    Article  Google Scholar 

  15. C.F. Ye, W.M. Liu, Y.X. Chen, and L.G. Yu, Room-Temperature Ionic Liquids: A Novel Versatile Lubricant, Chem. Commun., 2001, 21, p 2244–2245

    Article  Google Scholar 

  16. F. Zhou, Y.M. Liang, and W.M. Liu, Ionic Liquid Lubricants: Designed Chemistry for Engineering Applications, Chem. Soc. Rev., 2009, 38(9), p 2590–2599

    Article  CAS  Google Scholar 

  17. Z.Y. Wang, Y.Q. Xia, Z.L. Liu, and Z.Z. Wen, Conductive Lubricating Grease Synthesized Using the Ionic Liquid, Tribol. Lett., 2012, 46(1), p 33–42

    Article  CAS  Google Scholar 

  18. Y.R. Wang, Q.L. Yu, M.R. Cai, L. Shi, F. Zhou, and W.M. Liu, Ibuprofen-Based Ionic Liquids as Additives for Enhancing the Lubricity and Antiwear of Water-Ethylene Glycol Liquid, Tribol. Lett., 2017, 65(2), p 55

    Article  Google Scholar 

  19. D.D. Zheng, X.B. Wang, M. Zhang, and C. Ju, Synergistic Effects Between the Two Choline-Based Ionic Liquids as Lubricant Additives in Glycerol Aqueous Solution, Tribol. Lett., 2019, 67(2), p 47

    Article  Google Scholar 

  20. D. Qiao, H.Z. Wang, and D.P. Feng, Tribological Performance and Mechanism of Phosphate Ionic Liquids as Additives in Three Base Oils for Steel-on-aluminum Contact, Tribol. Lett., 2014, 55(3), p 517–531

    Article  CAS  Google Scholar 

  21. X.Q. Fan, Y.Q. Xia, and L.P. Wang, Tribological Properties of Conductive Lubricating Greases, Friction, 2014, 2(4), p 343–353

    Article  CAS  Google Scholar 

  22. X.Y. Ge, Y.Q. Xia, and Z.Y. Shu, Conductive and Tribological Properties of Lithium-Based Ionic Liquids as Grease Base Oil, Tribol. Trans., 2015, 58(4), p 686–690

    Article  CAS  Google Scholar 

  23. T.X. He, Q.W. Dai, W. Huang, and X.L. Wang, Colloidal Suspension of Graphene Oxide in Ionic Liquid as Lubricant, Appl. Phys. A Mater., 2018, 124(11), p 777

    Article  CAS  Google Scholar 

  24. V. Sharma, J. Johansson, R.B. Timmons, B. Prakash, and P.B. Aswath, Tribological Interaction of Plasma-Functionalized Polytetrafluoroethylene Nanoparticles with ZDDP and Ionic Liquids, Tribol. Lett., 2018, 66(3), p 107

    Article  Google Scholar 

  25. L.Q. Pham, J.H. Sohn, C.W. Kim, J.H. Park, H.S. Kang, B.C. Lee, and Y.S. Kang, Copper Nanoparticles Incorporated with Conducting Polymer: Effects of Copper Concentration and Surfactants on the Stability and Conductivity, J. Colloid Interface Sci., 2012, 365(1), p 103–109

    Article  CAS  Google Scholar 

  26. L.N. Si, Y. Pan, X.Q. Zhang, J. Wang, J. Yao, Y.J. Wang, F.B. Liu, and F. He, Tribological Properties of Metallic Nanoparticles as Lubricant Additives Under the Applied Electric Currents, Ind. Lubr. Tribol., 2018, 70(9), p 1714–1720

    Article  Google Scholar 

  27. J.R. Jaganathan, M. Sivapragasam, and C.D. Wilfred, Thermal Characteristics of 1-Butyl-3-Methylimimidazolium Based Oxidant Ionic Liquids, J. Chem. Eng. Process. Technol., 2016, 7, p 309

    Google Scholar 

  28. X.Q. Fan and L.P. Wang, High-Performance Lubricant Additives Based on Modified Graphene Oxide by Ionic Liquids, J. Colloid Interface Sci., 2015, 452, p 98–108

    Article  CAS  Google Scholar 

  29. H.M. Fu, X.Q. Fan, W. Li, M.H. Zhu, J.F. Peng, and H. Li, In Situ Modified Multilayer Graphene Toward High-Performance Lubricating Additive, RSC Adv., 2017, 7(39), p 24399–24409

    Article  Google Scholar 

  30. J. Yin, H.B. Zhang, X. Xiong, H.J. Tao, P. Wang, and C.Y. Deng, Influence of Applied Load on Wear Behavior of C/C-Cu Composites Under Electric Current, Prog. Nat. Sci., 2017, 27(2), p 192–196

    Article  CAS  Google Scholar 

  31. I. Yasar, A. Canakci, and F. Arslan, The Effect of Brush Spring Pressure on the Wear Behaviour of Copper-Graphite Brushes with Electrical Current, Tribol. Int., 2007, 40(9), p 1381–1386

    Article  CAS  Google Scholar 

  32. W. Wang, G.L. Zhang, and G.X. Xie, Ultralow Concentration of Graphene Oxide Nanosheets as Oil-Based Lubricant Additives, Appl. Surf. Sci., 2019, 498, p 143683

    Article  CAS  Google Scholar 

  33. M.R. Cai, Y.M. Liang, F. Zhou, and W.M. Liu, Anticorrosion Imidazolium Ionic Liquids as the Additive in Poly(ethylene glycol) for Steel/Cu-Sn Alloy Contacts, Faraday Discuss., 2012, 156, p 147–157

    Article  CAS  Google Scholar 

  34. Z.F. Cao and Y.Q. Xia, Synthesis and Tribological Properties of Polyaniline Functionalized by Ionic Liquids, J. Mater. Sci.: Mater. Electron., 2018, 53(9), p 7060–7071

    Article  CAS  Google Scholar 

  35. T. Sato, G. Masuda, and K. Takagi, Electrochemical Properties of Novel Ionic Liquids for Electric Double Layer Capacitor Applications, Electrochim. Acta, 2004, 49(21), p 3603–3611

    Article  CAS  Google Scholar 

  36. H.J. Yang, G.X. Chen, G.Q. Gao, G.N. Wu, and W.H. Zhang, Experimental Research on the Friction and Wear Properties of a Contact Strip of a Pantograph–Catenary System at the Sliding Speed of 350 km/h with Electric Current, Wear, 2015, 332, p 949–955

    Article  Google Scholar 

  37. C. Dold, T. Amann, and A. Kailer, Influence of Electric Potentials on Friction of Sliding Contacts Lubricated by an Ionic Liquid, Phys. Chem. Chem. Phys., 2015, 17(16), p 10339–10342

    Article  CAS  Google Scholar 

  38. H. Li, R.J. Wood, F. Endres, and R. Atkin, Influence of Alkyl Chain Length and Anion Species on Ionic Liquid Structure at the Graphite Interface as a Function of Applied Potential, J. Phys. Condens. Mater., 2014, 26(28), p 284115

    Article  Google Scholar 

  39. L.L. Kong, W. Huang, and X.L. Wang, Ionic Liquid Lubrication at Electrified Interfaces, J. Phys. D Appl. Phys., 2016, 49(22), p 225301

    Article  Google Scholar 

  40. G.X. Xie, J.B. Luo, D. Guo, and S.H. Liu, Nanoconfined Ionic Liquids Under Electric Fields, Appl. Phys. Lett., 2010, 96(4), p 043112

    Article  Google Scholar 

  41. X.Q. Fan, Y.Q. Xia, L.P. Wang, J.B. Pu, T.D. Chen, and H.B. Zhang, Study of the Conductivity and Tribological Performance of Ionic Liquid and Lithium Greases, Tribol. Lett., 2014, 53(1), p 281–291

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 41872183, 51775044), the Pre-Research Program in National 13th Five-Year Plan (Grant No. 61409230603) and the Fundamental Research Funds for Central Universities (Grant No. 2652018095).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lina Zhu or Lina Si.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhu, L., Si, L. et al. Study on the Friction Behaviors of Copper Nanowires in Ionic Liquids under External Voltages. J. of Materi Eng and Perform 29, 5718–5727 (2020). https://doi.org/10.1007/s11665-020-05073-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05073-5

Keywords

Navigation