Skip to main content
Log in

Structural and Hydrogen Storage Properties of Mg60-Ni40 and Mg80-Ni20 Alloys Prepared by Planar Flow Casting

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study was carried out to better understand the chemical composition, microstructure, and hydrogen properties of Mg binary alloys. In this study, Mg60-Ni40 and Mg80-Ni20 (wt.%) alloy ribbons with different microstructures have been produced by the melt spinning method. The structural, hydriding, and dehydriding properties of the alloys were evaluated. The phase constitutions and microstructures were characterized by XRD and SEM studies. Microstructural grain sizes measured for Mg60-Ni40 alloy ribbons were in the range of 1-5 µm, and the alloy contained finely dispersed Mg and Mg2Ni phases. In the case of Mg80-Ni20 alloy ribbons, the microstructural grain sizes were measured as less than 1 µm. The hydrogen absorption and desorption capacities and kinetics of these two alloys were found to be highly dependent on microstructure and phase properties. Also, the amount of Ni content affected both the hydrogen storage capacities and kinetics for both of the Mg-Ni binary alloys. The increasing amount of Ni resulted in reduced hydrogen absorption capacity. The Mg60-Ni40 and Mg80-Ni20 alloy ribbons demonstrated superior hydrogenation absorption capacity at 350 °C and reversibly absorbed about 4.62 and 5.51 (wt.%) mass hydrogen, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.S. Mao and X.B. Chen, Selected Nanotechnologies for Renewable Energy Applications, Int J Energ Res, 31(6-7), 619-636 (2007) (in English)

  2. Z. Wang, X. Zhang, Z. Ren, Y. Liu, J. Hu, H. Li, M. Gao, H. Pan, and Y. Liu, In Situ Formed Ultrafine NbTi Nanocrystals from a NbTiC Solid-Solution MXene for Hydrogen Storage in MgH2, J Mater Chem A, 2019, 7(23), p 14244-14252

    Article  CAS  Google Scholar 

  3. Y.H. Zhang, M. Ji, Z.M. Yuan, J.L. Gao, Y. Qi, X.P. Dong, and S.H. Guo, A comparison Study of Hydrogen Storage Performances of SmMg11Ni Alloys Prepared by Melt Spinning and Ball Milling, J Rare Earth, 36(4), 409-417 (2018) (in English)

  4. H.J. Lin, L.Z. Ouyang, H. Wang, D.Q. Zhao, W.H. Wang, D.L. Sun, and M. Zhu, Hydrogen Storage Properties of Mg-Ce-Ni Nanocomposite Induced from Amorphous Precursor with the Highest Mg Content, Int. J. Hydrogen Energy, 37(19), 14329-14335 (2012) (in English)

  5. L. Schlapbach and A. Zuttel, Hydrogen-Storage Materials for Mobile Applications, Nature, 414(6861), 353-358 (2001) (in English)

  6. M. Song, S. Kwon, D.R. Mumm, and H.R. Park, Hydrogenation Reaction of Mg-Based Alloys Fabricated by Rapid Solidification, Met. Mater. Int., 2013, 19(2), p 309-314

    Article  CAS  Google Scholar 

  7. K.C. Kim, A Review on Design Strategies for Metal Hydrides with Enhanced Reaction Thermodynamics for Hydrogen Storage Applications, Int J Energ Res, 2018, 42(4), p 1455-1468

    Article  CAS  Google Scholar 

  8. B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, Metal Hydride Materials for Solid Hydrogen Storage: A review, Int. J. Hydrogen Energy, 32(9), 1121-1140 (2007) (in English)

  9. D. Vojtech, B. Sustarsic, M. Mortanikova, A. Michalcova, and A. Vesela, Electrochemical Hydriding as Method for Hydrogen Storage? Int. J. Hydrogen Energy, 34(17), 7239-7245 (2009) (in English)

  10. K. Wang, X. Zhang, Z. Ren, X. Zhang, J. Hu, M. Gao, H. Pan, and Y. Liu, Nitrogen-stimulated Superior Catalytic Activity of Niobium Oxide for Fast Full Hydrogenation of Magnesium at Ambient Temperature, Energy Storage Mater, 2019, 23, p 79-87

    Article  Google Scholar 

  11. P. Adametz, K. Müller, and W. Arlt, Energetic Evaluation of Hydrogen Storage in Metal Hydrides, Int J Energ Res, 2016, 40(13), p 1820-1831

    Article  CAS  Google Scholar 

  12. M. Balcerzak and M. Jurczyk, Influence of Gaseous Activation on Hydrogen Sorption Properties of TiNi and Ti2Ni Alloys, J. Mater. Eng. Perform., 2015, 24(4), p 1710-1717

    Article  CAS  Google Scholar 

  13. C.F. Xu, Z.F. Gu, G. Cheng, Y.Q. Yang, Z.M. Wang, H.Y. Zhou, and Q.Y. Su, Discharge Capacities of Mg1xNdxNi (x = 0, 0.05, 0.1, 0.2) Alloys Prepared by Mechanical Alloying, J. Mater. Eng. Perform., 21(7), 1391-1394 (2012)

  14. H.X. Chen, Z.M. Wang, H.Y. Zhou, C.Y. Ni, J.Q. Deng, and Q.R. Yao, Hydrogen Storage Properties and Thermal Stability of Amorphous Mg-70(RE25Ni75)(30) Alloys, J. Alloys Compd., 2013, 563, p 1-5 ((in English))

    Article  CAS  Google Scholar 

  15. J. Jiang, H. Leng, J. Meng, K.-C. Chou, and Q. Li, Hydrogen Storage Characterization of Mg17Ni1.5Ce0.5/5 wt.% Graphite Synthesized by Mechanical Milling and Subsequent Microwave Sintering, Int J Energ Res, 37(7), 726-731 (2013)

  16. V.K. Sharma and E. Anil Kumar, Metal Hydrides for Energy Applications—Classification, PCI Characterisation and Simulation, Int J Energ Res, 41(7), 901-923 (2017)

  17. Y. Wu, M.V. Lototskyy, J.K. Solberg, and V.A. Yartys, Effect of Microstructure on the Phase Composition and Hydrogen Absorption-Desorption Behaviour of Melt-Spun Mg-20Ni-8Mm Alloys, Int. J. Hydrogen Energy, 2012, 37(2), p 1495-1508

    Article  CAS  Google Scholar 

  18. C.D. Yim, B.S. You, Y.S. Na, and J.S. Bae, Hydriding Properties of Mg-xNi Alloys with Different Microstructures, Catal. Today, 120(3-4), 276-280 (2007) (in English)

  19. Y.H. Zhang, B.W. Li, H.P. Ren, X.X. Ding, X.G. Liu, and L.L. Chen, An Investigation on Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg2Ni1-xCox (x = 0-0.4) Alloy Prepared by Melt Spinning, J. Alloys Compd., 509(6), 2808-2814 (2011) (in English)

  20. L.A. Bendersky, C. Chiu, V.M. Skripnyuk, and E. Rabkin, Effect of Rapid Solidification on Hydrogen Solubility in Mg-rich Mg-Ni Alloys, Int. J. Hydrogen Energy, 36(9), 5388-5399 (2011) (in English)

  21. M. Balcerzak, M. Nowak, and M. Jurczyk, The Influence of Pr and Nd Substitution on Hydrogen Storage Properties of Mechanically Alloyed (La, Mg)2Ni7-Type Alloys, J. Mater. Eng. Perform., 2018, 27(11), p 6166-6174

    Article  CAS  Google Scholar 

  22. T. Si, Y. Ma, Y. Li, and D. Liu, Solid solution of Cu in Mg2NiH4 and its Destabilized Effect on Hydrogen Desorption, Mater. Chem. Phys., 2017, 193, p 1-6

    Article  CAS  Google Scholar 

  23. I.G. Fernández, G.O. Meyer, and F.C. Gennari, Hydriding/Dehydriding Behavior of Mg2CoH5 Produced by Reactive Mechanical Milling, J. Alloys Compd., 2008, 464(1), p 111-117

    Article  Google Scholar 

  24. S. Kalinichenka, L. Röntzsch, C. Baehtz, and B. Kieback, Hydrogen Desorption Kinetics of Melt-Spun and Hydrogenated Mg90Ni10 and Mg80Ni10Y10 using in Situ Synchrotron, X-ray Diffraction and Thermogravimetry, J. Alloys Compd., 2010, 496(1), p 608-613

    Article  CAS  Google Scholar 

  25. J.J. Reilly, and R.H. Wiswall, Reaction Hydrogen with Alloys Magnesium and Nickel and Formation of Mg2nih4, Inorg. Chem., 7(11), 2254-& (1968) (in English)

  26. X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao, and H.G. Pan, Empowering Hydrogen Storage Performance of MgH2 by Nanoengineering and Nanocatalysis, Materials Today Nano, 2020, 9, p 100064

    Article  Google Scholar 

  27. T. Yang, P. Wang, C. Xia, Q. Li, C. Liang, and Y. Zhang, Characterization of Microstructure, Hydrogen Storage Kinetics and Thermodynamics of a Melt-Spun Mg86Y10Ni4 Alloy, Int. J. Hydrogen Energy, 2019, 44(13), p 6728-6737

    Article  CAS  Google Scholar 

  28. I. Okonska and M. Jurczyk, Hydriding Properties of Mg-3d/M-Type Nanocomposites (3d = Cu, Ni; M = C, Ni, Cu, Pd), Physica Status Solidi a-Applications and Materials Science, 207(5), 1139-1143 (2010) (in English)

  29. V. Bérubé, G. Radtke, M. Dresselhaus, and G. Chen, Size Effects on the Hydrogen Storage Properties of Nanostructured Metal Hydrides: A Review, Int J Energ Res, 2007, 31(6-7), p 637-663

    Article  Google Scholar 

  30. Á. Révész, M. Gajdics, L.K. Varga, G. Krállics, L. Péter, and T. Spassov, Hydrogen Storage of Nanocrystalline Mg-Ni Alloy Processed by Equal-Channel Angular Pressing and Cold Rolling, Int. J. Hydrogen Energy, 2014, 39(18), p 9911-9917

    Article  Google Scholar 

  31. A.M. Jorge, E. Prokofiev, G. Ferreira de Lima, E. Rauch, M. Veron, W.J. Botta, M. Kawasaki, and T.G. Langdon, An Investigation of Hydrogen Storage in a Magnesium-Based Alloy Processed by Equal-Channel Angular Pressing, Int. J. Hydrogen Energy, 2013, 38(20), p 8306-8312

    Article  CAS  Google Scholar 

  32. H.-Y. Zhou, X.-X. Lan, Z.-M. Wang, Q.-R. Yao, C.-Y. Ni, and W.-P. Liu, Effect of Rapid Solidification on Phase Structure and Hydrogen Storage Properties of Mg70(Ni0.75La0.25)30 alloy, Int. J. Hydrogen Energy, 37(17), 13178-13184 (2012)

  33. Y.H. Zhang, H.T. Wang, T.T. Zhai, T. Yang, Y. Qi, and D.L. Zhao, Hydrogen Storage Characteristics of the Nanocrystalline and Amorphous Mg-Nd-Ni-Cu-Based Alloys Prepared by Melt Spinning, Int. J. Hydrogen Energy, 39(8), 3790-3798 (2014) (in English)

  34. Y.H. Zhang, W. Zhang, Z.M. Yuan, H.W. Shang, Y.Q. Li, and S.H. Guo, Structures and Electrochemical Hydrogen Storage Properties of Melt-Spun RE-Mg-Ni-Co-Al alloys, Int. J. Hydrogen Energy, 42(20), 14227-14245 (2017) (in English)

  35. M.Y. Song, S.N. Kwon, J.S. Bae, and S.H. Hong, Hydrogen-Storage Properties of Mg-23.5Ni-(0 and 5)Cu Prepared by Melt Spinning and Crystallization Heat Treatment, Int. J. Hydrogen Energy, 33(6), 1711-1718 (2008) (in English)

  36. Y. Liu, H. Pan, M. Gao, and Q. Wang, Advanced Hydrogen Storage Alloys for Ni/MH Rechargeable Batteries, J. Mater. Chem., 2011, 21(13), p 4743-4755

    Article  CAS  Google Scholar 

  37. M. Tliha, C. Khaldi, and J. Lamloumi, AC Impedance Behavior of LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 Hydrogen-Storage Alloy: Effect of Surface Area, J. Mater. Eng. Perform., 25(4), 1578-1585 (2016)

  38. Y. Li, J. Yang, L. Luo, F. Hu, T. Zhai, Z. Zhao, Y. Zhang, and D. Zhao, Microstructure Characteristics, Hydrogen Storage Kinetic and Thermodynamic Properties of Mg80-xNi20Yx (x = 0-7) alloys, Int. J. Hydrogen Energy, 2019, 44(14), p 7371-7380

    Article  CAS  Google Scholar 

  39. X. Hou, Y. Wang, Y. Yang, R. Hu, G. Yang, L. Feng, and G. Suo, Microstructure Evolution and Controlled Hydrolytic Hydrogen Generation Strategy of Mg-rich Mg-Ni-La Ternary Alloys, Energy, 2019, 188, p 116081

    Article  CAS  Google Scholar 

  40. F. Guo, T. Zhang, L. Shi, and L. Song, Composition Dependent Microstructure Evolution, Activation and de-/Hydrogenation Properties of Mg-Ni-La Alloys, Int. J. Hydrogen Energy, 2019, 44(31), p 16745-16756

    Article  CAS  Google Scholar 

  41. V. Knotek, O. Ekrt, M. Lhotka, and D. VojtĚCh, Electrochemical Hydriding and Thermal Dehydriding Properties of Nanostructured Hydrogen Storage MgNi26 Alloy, Transactions of Nonferrous Metals Society of China, 2016, 26(8), p 2136-2143

    Article  CAS  Google Scholar 

  42. X. Ding, R. Chen, Y. Jin, X. Chen, J. Guo, Y. Su, H. Ding, and H. Fu, Activation Mechanism and Dehydrogenation Behavior in Bulk Hypo/Hyper-eutectic Mg-Ni Alloy, J. Power Sources, 2018, 374, p 158-165

    Article  CAS  Google Scholar 

  43. Y.H. Zhang, Y. Qi, Z.H. Ma, Y. Cai, S.H. Guo, and X.L. Wang, Investigation on Electrochemical Performances of Melt-Spun Nanocrystalline and Amorphous Mg2Ni1-xMnx (x = 0-0.4) Electrode Alloys, Int. J. Hydrogen Energy, 35(20), 11025-11034 (2010) (in English)

  44. Y. Li, F. Hu, L. Luo, J. Xu, Z. Zhao, Y. Zhang, and D. Zhao, Hydrogen Storage of Casting MgTiNi Alloys, Catal. Today, 2018, 318, p 103-106

    Article  CAS  Google Scholar 

  45. G. Friedlmeier, M. Arakawa, T. Hirai, and E. Akiba, Preparation and Structural, Thermal and Hydriding Characteristics of Melt-Spun Mg-Ni Alloys, J. Alloys Compd., 1999, 292(1), p 107-117

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by TUBITAK at #218M231 project number. Besides, it was partially supported Karadeniz Technical University Scientific Research Projects #FDK-2018-7744 and #FBA-2019-8566. The authors also acknowledge Katarina Batalovic in University of Belgrade (Vinca Institute of Nuclear Sciences) for her valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sefa Emre Sünbül.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sünbül, S.E., Öztürk, S. & İçin, K. Structural and Hydrogen Storage Properties of Mg60-Ni40 and Mg80-Ni20 Alloys Prepared by Planar Flow Casting. J. of Materi Eng and Perform 29, 6101–6107 (2020). https://doi.org/10.1007/s11665-020-05069-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05069-1

Keywords

Navigation