Skip to main content
Log in

Dynamics of Zonally Averaged Circulation Characteristics in the Middle Atmosphere

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The ERA-Interim archive data and circulation calculations using a middle and upper atmosphere model (MUAM) have been used to study dynamic processes in the middle atmosphere. Variations in zonally averaged atmospheric characteristics have been analyzed based on observational data and model calculations. In the middle atmosphere within a range of 10–30 days, synchronous temperature variations are observed within zones extended horizontally and vertically. Horizontally, the sign of such variations changes in the region of jet streams (and remains unchanged at the equator) and, vertically, their sign changes within the stratopause and mesopause regions. The nature of these variations is almost independent of the phase of the quasi-biennial cycle in the equatorial stratosphere. These variations are global in nature and similar to oscillations in meridional circulation cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. J. M. Wallace and M. L. Blackmon, “Observation of low-frequency atmospheric variability,” in Large-Scale Dynamic Processes in the Atmosphere, Ed. by B. J. Hoskins and R. P. Pearce (Acad. Press, London, 1983).

    Google Scholar 

  2. G. Branstator, “The maintenance of low-frequency atmospheric anomalies,” J. Atmos. Sci. 49, 1924–1945 (1992).

    Article  Google Scholar 

  3. T. Matsuno, “A model of the stratosphere sudden warming,” J. Atmos. Sci. 28, 1479–1494 (1971).

    Article  Google Scholar 

  4. A. Chandran, R. L. Collins, and V. L. Harvey, “Stratosphere-mesosphere coupling during stratospheric sudden warming events,” Adv. Space Res. 53, 1265–1289 (2014).

    Article  Google Scholar 

  5. V. Limpasuvan, D. W. J. Thompson, and D. L. Hartmann, “The life cycle of the Northern Hemisphere sudden stratospheric warmings,” J. Clim. 17, 2584–2595 (2004).

    Article  Google Scholar 

  6. A. H. Butler, J. P. Sjoberg, D. J. Seidel, and K. H. Rosenlof, “A sudden stratospheric warming compendium,” Earth Syst. Sci. Data 9, 63–76 (2017).

    Article  Google Scholar 

  7. A. I. Pogorel’tsev, “Generation of normal atmospheric modes by stratospheric vacillations,” Izv., Atmos. Oceanic Phys. 43, 423–435 (2007).

    Article  Google Scholar 

  8. A. I. Pogorel’tsev, E. N. Savenkova, and N. N. Pertsev, “Sudden stratospheric warmings: The role of normal atmospheric modes,” Geomagn. Aeron. (Engl. Transl.) 54 (3), 357–372 (2014).

  9. H.-L. Liu and R. G. Roble, “A study of a self-generated stratospheric sudden warming and its mesospheric-lower thermospheric impacts using the coupled TIME-GCM/CCM3,” J. Geophys. Res. 107, 46–95 (2002).

    Google Scholar 

  10. O. S. Kochetkova, V. I. Mordvinov, and M. A. Rudneva, “Analysis of the factors affecting the occurrence of stratospheric warming,” Opt. Atmos. Okeana 27 (8), 719–727 (2014).

    Google Scholar 

  11. J. O. Dickey, M. Ghil, and S. L. Marcus, “Extratropical aspects of the 40–50 day oscillation in length-of-day and atmospheric angular momentum,” J. Geophys. Res. 96, 22 643–22 658 (1991).

    Article  Google Scholar 

  12. F. Lott, A. W. Robertson, and G. Michael, “Mountain torques and Northern Hemisphere low-frequency variability. Part I: hemispheric aspects,” J. Atmos. Sci. 61, 1259–1274 (2004).

    Article  Google Scholar 

  13. K. Weickmann and E. Berry, “The tropical Madden-Julian oscillation and the global wind oscillation,” Mon. Weather Rev. 137, 1601–1614 (2009).

    Article  Google Scholar 

  14. K. K. Kandieva, O. G. Aniskina, A. O. Pogoreltsev, O. S. Zorkaltseva, and V. I. Mordvinov, “Effect of Madden-Julian oscillation and quasi-biennial oscillation on the dynamics of extratropical stratosphere,” Geomagn. Aeron. (Engl. Transl.) 59, 105–114 (2019).

  15. A. I. Pogoreltsev, A. A. Vlasov, and Ch. Jacobi, “Planetary waves in coupling the lower and upper atmosphere,” J. Atmos. Sol.-Terr. Phys. 69, 2083–2101 (2007).

    Article  Google Scholar 

  16. N. M. Gavrilov and A. V. Koval, “Parameterization of mesoscale stationary orographic wave forcing for use in numerical models of atmospheric dynamics,” Izv., Atmos. Oceanic Phys. 49, 244–251 (2013).

    Article  Google Scholar 

  17. E. N. Suvorova, E. A. Drobashevskaya, and A. I. Pogorel’tsev, “Climatic three-dimensional ozone distribution model based on MERRA reanalysis data,” Uch. Zap. Ros. Gos. Gidrometeorol. Univ., No. 49, 38–46 (2017).

  18. . S. Ermakova, I. A. Statnaya, I. N. Fedulina, E. V. Suvorova, and A. I. Pogoreltsev, “Three-dimensional semi-empirical climate model of water vapor distribution and its implementation to the radiation module of the middle and upper atmosphere model,” Russ. Meteorol. Hydrol. 42, 594–600 (2017)

    Article  Google Scholar 

  19. S. Kobayashi, Y. Harada, Y. Ota, et al., “The JRA-55 reanalysis: General specifications and basic characteristics,” J. Meteorol. Soc. Jpn. 93, 548 (2015).

    Article  Google Scholar 

  20. M. M. Rienecker, M. J. Suarez, R. Gelaro, et al., “MERRA: NASA’s modern-era retrospective analysis for research and applications,” J. Clim. 14, 3624–3648 (2011).

    Article  Google Scholar 

  21. O. S. Zorkaltseva, V. I. Mordvinov, E. V. Devyatova, and N. S. Dombrovskaya, “Method for calculating torsional oscillations in Earth’s atmosphere from NCEP/NCAR, MERRA-2, ECMWF ERA-40, and ERA-INTERIM,” Sol.-Terr. Phys. 5 (1), 69–76 (2019).

    Google Scholar 

  22. Computational Processes and Systems: Collected Works, Ed. by G. I. Marchuk (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  23. V. P. Dymnikov, Selected Chapters of Stability Theory for the Dynamics of a Two-Dimensional Incompressible Fluid (Inst. Vych. Matem. Ross. Akad. Nauk, Moscow, 2004) [in Russian].

    Google Scholar 

  24. R. Madden, “Observations of large-scale traveling Rossby waves,” Rev. Geophys. Space Phys. 17, 1935–1949 (1979).

    Article  Google Scholar 

  25. M. Salby, “A ubiquitous wavenumber 5 anomaly in the Southern Hemisphere during FGGE,” Mon. Weather Rev. 110, 1712–1720 (1982).

    Article  Google Scholar 

  26. A. J. Simmons, J. M. Wallace, and G. M. Branstator, “Barotropic wave propagation and instability, and atmosphere teleconnection patterns,” J. Atmos. Sci. 40 (6), 1363–1392 (1983).

    Article  Google Scholar 

  27. G. M. Branstator, “A striking example of the amosphere’s leading traveling pattern,” J. Atmos. Sci. 44, 2310–2323 (1987).

    Article  Google Scholar 

  28. V. I. Mordvinov, E. V. Devyatova, and V. M. Tomozov, “Hydrodynamic instabilities in the tachocline, driven by layer thickness variations and mean flow inhomogeneities,” Soln.-Zem. Fiz., No. 23, 3–12 (2013).

Download references

Funding

This work was supported by the Fundamental Research Program II.16.1.1 for State Academies of Sciences (2013–2020), the Russian Foundation for Basic Research (project no. 18-05-01050), and the Russian Science Foundation (project no. 19-77-00009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Zorkaltseva.

Additional information

Translated by B. Dribinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorkaltseva, O.S., Mordvinov, V.I., Pogoreltsev, A.I. et al. Dynamics of Zonally Averaged Circulation Characteristics in the Middle Atmosphere. Izv. Atmos. Ocean. Phys. 56, 378–389 (2020). https://doi.org/10.1134/S0001433820040118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820040118

Keywords:

Navigation