Skip to main content
Log in

Intersection of unit balls in classical matrix ensembles

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the volume of the intersection of two unit balls from one of the classical matrix ensembles GOE, GUE and GSE, as the dimension tends to infinity. This can be regarded as a matrix analogue of a result of Schechtman and Schmuckenschläger for classical p-balls [Schechtman and Schmuckenschläger, GAFA Lecture Notes, 1991]. The proof of our result is based on two ingredients, which are of independent interest. The first one is a weak law of large numbers for a point chosen uniformly at random in the unit ball of such a matrix ensemble. The second one is an explicit computation of the asymptotic volume of such matrix unit balls, which in turn is based on the theory of logarithmic potentials with external fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Anderson, A. Guionnet and O. Zeitouni, An Introduction to Random Matrices, Cambridge Studies in Advanced Mathematics, Vol. 118, Cambridge University Press, Cambridge, 2010.

    MATH  Google Scholar 

  2. S. Artstein-Avidan, A. Giannopoulos and V.D. Milman, Asymptotic Geometric Analysis. Part I, Mathematical Surveys and Monographs, Vol. 202, American Mathematical Society, Providence, RI, 2015.

    MATH  Google Scholar 

  3. S. Brazitikos, A. Giannopoulos, P. Valettas and B.-H. Vritsiou, Geometry of Isotropic Convex Bodies, Mathematical Surveys and Monographs, Vol. 196, American Mathematical Society, Providence, RI, 2014.

    MATH  Google Scholar 

  4. J. A. Chávez-Domínguez and D. Kutzarova, Stability of low-rank matrix recovery and its connections to Banach space geometry, Journal of Mathematical Analysis and Applications 427 (2015), 320–335.

    MathSciNet  MATH  Google Scholar 

  5. A. Eisinberg and G. Fedele, Vandermonde systems on Gauss-Lobatto Chebychev nodes, Applied Mathematics and Computation 170 (2005), 633–647.

    MathSciNet  MATH  Google Scholar 

  6. M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Mathematische Zeitschrift 17 (1923), 19–22.

    MATH  Google Scholar 

  7. M. Fekete, Über den transfiniten Durchmesser ebener Punktmengen, Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae Francisco-Josephinae 5 (1930), 19–22.

    MATH  Google Scholar 

  8. O. Guédon, Concentration phenomena in high dimensional geometry, in Journées MAS 2012, ESAIM Proceedings, Vol. 44, EDP Sciences, Les Ulis, 2014, pp. 47–60.

  9. O. Guédon, P. Nayar and T. Tkocz, Concentration inequalities and geometry of convex bodies, in Analytical and Probabilistic Methods in the Geometry of Convex Bodies, IMPAN Lecture Notes, Vol. 2, Polish Academy of Sciences Institute of Mathematics, Warsaw, 2014, pp. 9–86.

    MATH  Google Scholar 

  10. O. Guédon and G. Paouris, Concentration of mass on the Schatten classes, Annales de l’Institut Henri Poincaré. Probabilités et Statistiques 43 (2007), 87–99.

    MathSciNet  MATH  Google Scholar 

  11. F. Hiai and D. Petz, The Semicircle Law, Free Random Variables and Entropy, Mathematical Surveys and Monographs, Vol. 77, American Mathematical Society, Providence, RI, 2000.

    MATH  Google Scholar 

  12. A. Hinrichs, J. Prochno and J. Vybíral, Entropy numbers of embeddings of Schatten classes, Journal of Functional Analysis 273 (2017), 3241–3261.

    MathSciNet  MATH  Google Scholar 

  13. Z. Kabluchko, J. Prochno and C. Thäle, High-dimensional limit theorems for random vectors innp -balls, Communications in Contemporary Mathematics 21 (2019), Article no. 1750092.

  14. Z. Kabluchko, J. Prochno and C. Thäle, Exact asymptotic volume and volume ratio of Schatten unit balls, Journal of Approximation Theory 257 (2020), Article no. 105457.

  15. Z. Kabluchko, J. Prochno and C. Thäle, Sanov-type large deviations in Schatten classes, Annales de l’Institut Henri Poincaré Probabilités et Statistiques 56 (2020), 928–953.

    MathSciNet  MATH  Google Scholar 

  16. Z. Kabluchko, J. Prochno and C. Thäle, High-dimensional limit theorems for random vectors innp -balls. II, Communications in Contemporary Mathematics, to appear, https://arxiv.org/abs/1906.03599.

  17. O. Kallenberg, Foundations of Modern Probability, Probability and its Applications, Springer, New York, 2002.

    MATH  Google Scholar 

  18. O. Kallenberg, Random Measures, Theory and Applications, Probability Theory and Stochastic Modelling, Vol. 77, Springer, Cham, 2017.

    MATH  Google Scholar 

  19. H. Känig, M. Meyer and A. Pajor, The isotropy constants of the Schatten classes are bounded, Mathematische Annalen 312 (1998), 773–783.

    MathSciNet  MATH  Google Scholar 

  20. V. S. Koroljuk and Y. V. Borovskich, Theory U-statistics, Mathematics and its Applications, Vol. 273, Kluwer Academic, Dordrecht, 1994.

    Google Scholar 

  21. H. N. Mhaskar and E. B. Saff, Extremal problems for polynomials with exponential weights, Transactions of the American Mathematical Society 285 (1984), 203–234.

    MathSciNet  MATH  Google Scholar 

  22. A. Naor, The surface measure and cone measure on the sphere ofnp , Transactions of the American Mathematical Society 359 (2007), 1045–1079.

    MathSciNet  MATH  Google Scholar 

  23. A. Naor and D. Romik, Projecting the surface measure of the sphere ofnp , Annales de l’Institut Henri Poincarié Probabilitiés et Statistiques 39 (2003), 241–261.

    MATH  Google Scholar 

  24. L. Pastur and M. Shcherbina, Eigenvalue Distribution of Large Random Matrices, Mathematical Surveys and Monographs, Vol. 171, American Mathematical Society, Providence, RI, 2011.

    MATH  Google Scholar 

  25. G. Pólya and G. Szegö, Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räaumlichen Punktmengen, Journal für die Reine und Angewandte Mathematik 165 (1931), 4–49.

    MATH  Google Scholar 

  26. J. Radke and B.-H. Vritsiou, On the thin-shell conjecture for the Schatten classes, Annales de l’Institut Henri Poincarié Probabilitiés et Statistiques 56 (2020), 87–119.

    MathSciNet  MATH  Google Scholar 

  27. E. A. Rakhmanov, Asymptotic properties of orthogonal polynomials on the real axis, Matematicheskiĭ Sbornik 119 (1982), 163–203, 303.

    MathSciNet  MATH  Google Scholar 

  28. E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Grundlehren der Mathematischen Wissenschaften, Vol. 316, Springer, Berlin, 1997.

    MATH  Google Scholar 

  29. J. Saint Raymond, Le volume des idéaux d’opérateurs classiques, Studia Mathematica 80 (1984), 63–75.

    MathSciNet  MATH  Google Scholar 

  30. G. Schechtman and M. Schmuckenschläger, Another remark on the volume of the intersection of two Lnp balls, in Geometric Aspects of Functional Analysis (1989–90), Lecture Notes in Mathematics, Vol. 1469, Springer, Berlin, 1991, pp. 174–178.

    MATH  Google Scholar 

  31. G. Schechtman and J. Zinn, On the volume of the intersection of two balls, Proceedings of the American Mathematical Society 110 (1990), 217–224.

    MathSciNet  MATH  Google Scholar 

  32. M. Schmuckenschläger, Volume of intersections and sections of the unit ball ofnp , Proceedings of the American Mathematical Society 126 (1998), 1527–1530.

    MathSciNet  MATH  Google Scholar 

  33. M. Schmuckenschläger, CLT and the volume of intersections ofnp -balls, Geometriae Dedicata 85 (2001), 189–195.

    MathSciNet  MATH  Google Scholar 

  34. S. Szarek and N. Tomczak-Jaegermann, On nearly euclidean decomposition for some classes of Banach spaces, Compositio Mathematica 40 (1980), 367–385.

    MathSciNet  MATH  Google Scholar 

  35. W. Van Assche, Asymptotics for Orthogonal Polynomials, Lecture Notes in Mathematics, Vol. 1265, Springer, Berlin, 1987.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Thäle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabluchko, Z., Prochno, J. & Thäle, C. Intersection of unit balls in classical matrix ensembles. Isr. J. Math. 239, 129–172 (2020). https://doi.org/10.1007/s11856-020-2052-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2052-6

Navigation