Skip to main content
Log in

Hall algebras and graphs of Hecke operators for elliptic curves

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The graph of a Hecke operator encodes all information about the action of this operator on automorphic forms over a global function field. These graphs were introduced by Lorscheid in [16] for PGL2 and generalized to GLn in [1]. After reviewing some general properties, we explain the connection to the Hall algebra of the function field. In the case of an elliptic function field, we can use structure results of Burban-Schiffmann [7] and Fratila [8] to develop an algorithm which explicitly calculates these graphs. We apply this algorithm to determine some structure constants and provide explicitly the rank two case in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Alvarenga, On graphs of Hecke operators, Journal of Number Theory 199 (2019), 192–228.

    MathSciNet  MATH  Google Scholar 

  2. J. K. Arason, R. Elman and B. Jacob, On indecomposable vector bundles, Communications in Algebra 20 (1992), 1323–1351.

    MathSciNet  MATH  Google Scholar 

  3. M. Atiyah, On the Krull-Schmidt theorem with application to sheaves, Bulletin de la Société Mathématique de France 84 (1956), 307–317.

    MathSciNet  MATH  Google Scholar 

  4. M. Atiyah, Vector bundles over an elliptic curve, Proceedings of the London Mathematical Society 7 (1957), 414–452.

    MathSciNet  MATH  Google Scholar 

  5. P. Baumann and C. Kassel, The Hall algebra of the category of coherent sheaves on the projective line, Journal für die Reine und Angewandte Mathematik 533 (2001), 207–233.

    MathSciNet  MATH  Google Scholar 

  6. K. Brüning and I. Burban, Coherent sheaves on an elliptic curve, in Interactions Between Homotopy Theory and Algebra, Contemporary Mathematics, Vol. 436, American Mathematical Society, Providence, RI, 2007, pp. 297–315.

    Google Scholar 

  7. I. Burban and O. Schiffmann, On the Hall algebra of an elliptic curve, I, Duke Mathematical Journal 161 (2012), 1171–1231.

    MathSciNet  MATH  Google Scholar 

  8. D. Fratila, Cusp eigenforms and the Hall algebra of an elliptic curve, Compositio Mathematica 149 (2013), 914–958.

    MathSciNet  MATH  Google Scholar 

  9. G. Harder and M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Mathematische Annalen 212 (1974/75), 215–248.

    MathSciNet  MATH  Google Scholar 

  10. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer, New York-Heidelberg, 1977.

    MATH  Google Scholar 

  11. M. M. Kapranov, Eisenstein series and quantum affine algebras, Journal of Mathematical Sciences (New York), 84 (1997), 1311–1360.

    MathSciNet  MATH  Google Scholar 

  12. S. Lang, Algebraic groups over finite fields, American Journal of Mathematica 78 (1956), 555–563.

    MathSciNet  MATH  Google Scholar 

  13. Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics, Vol. 6, Oxford University Press, Oxford, 2002.

    MATH  Google Scholar 

  14. O. Lorscheid, Toroidal Automorphic Forms for Function Fields, PhD. Thesis, University of Utrecht, http://w3.impa.br/~lorschei/thesis.pdf.

  15. O. Lorscheid, Automorphic forms for elliptic function fields, Mathematische Zeitschrift 272 (2012), 885–911.

    MathSciNet  MATH  Google Scholar 

  16. O. Lorscheid, Graphs of Hecke operators, Algebra & Number Theory 7 (2013), 19–61.

    MathSciNet  MATH  Google Scholar 

  17. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015.

    MATH  Google Scholar 

  18. G. Pick, Geometrisches zur zahlenlehre Sitzungsberichte des deutschen naturwissenschaftlich-medicinischen Vereines für Böhmen “Lotos” in Prag 47 (1889), 311–319.

    Google Scholar 

  19. C. M. Ringel, Hall algebras and quantum groups, Inventiones Mathematicae 101 (1990), 583–591.

    MathSciNet  MATH  Google Scholar 

  20. O. Schiffmann, Lectures on Hall algebras, in Geometric Methods in Representation Theory. II, Séminaires et Congrés, Vol. 24, Société Mathématique de France, Paris, 2012, pp. 1–141.

    Google Scholar 

  21. J-P. Serre, Trees, Springer Monographs in Mathematics, Springer, Berlin, 2003.

    MATH  Google Scholar 

  22. J. H. Silverman, The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics, Vol. 106 Springer, Dordrecht, 2009.

    MATH  Google Scholar 

  23. D. Zagier, Eisenstein series and the Riemann zeta function, in Automorphic Forms, Representation Theory and Arithmetic (Bombay, 1979), Tata Institute of Fundamental Research Studies in Mathematics, Vol. 10, Tata Institute of Fundamental Research, Bombay, 1981, pp. 275–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Alvarenga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarenga, R. Hall algebras and graphs of Hecke operators for elliptic curves. Isr. J. Math. 239, 215–269 (2020). https://doi.org/10.1007/s11856-020-2056-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2056-2

Navigation