Skip to main content

Advertisement

Log in

Spectral Radiative Properties of Ceramic Particles for Concentrated Solar Thermal Energy Storage Applications

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This work investigates the spectral radiative properties of ceramic particles using a monochromator and a Fourier-transform infrared spectrometer (FTIR) with integrating spheres at wavelengths from 0.38 μm to 15 μm. Particles are encased between two transparent windows to obtain the directional-hemispherical reflectance of the particle bed. Two types of commercially available particles with three different sizes are examined. Integration over the solar spectrum reveals that the solar absorptance of the particle beds is between 0.940 and 0.957. The total emittance at 1000 K is also estimated by assuming the spectral emittance is independent of temperature. The optical constants of particles are modeled with effective medium approaches, considering the optical properties of individual constituent materials. The absorptance of the particle is estimated using the effective optical constants and compared with that of the particle bed from the measurement. This work facilitates the characterization of radiative properties of particles with a windowed method and provides a modeling scheme for approximating the radiative properties of composite ceramic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(a_{\lambda }\) :

Absorption coefficient, m−1

d :

Thickness, m

E :

Emissive power, W·m−2

\(E_{\lambda }\) :

Spectral emissive power, W·m−2·μm−1

\(G_{\lambda }\) :

Spectral irradiance, W·m−2·μm−1

n :

Refractive index

R :

Directional-hemispherical reflectance

T :

Directional-hemispherical transmittance

α :

Absorptance

ε :

Emittance

\(\tilde{\varepsilon }\) :

Complex dielectric function (relative electric permittivity)

κ :

Extinction coefficient or imaginary part of the refractive index

λ :

Wavelength, μm

ρ :

Reflectivity at the surface

σ :

The Stefan–Boltzmann constant, 5.670 × 10−8 W·m−2·K−4

τ :

Internal transmissivity

ϕ :

Volume fraction

b:

Blackbody

E or O:

Extraordinary or ordinary component

eff:

Effective

h:

Host

j :

Index for individual constituent

p,s,w:

Particle bed, sample (particle bed with window), and window

λ :

Spectral

References

  1. A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, L.F. Cabeza, State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization. Renew. Sustain. Energy Rev. 14, 31–55 (2020)

    Google Scholar 

  2. S. Kuravi, J. Trahan, D.Y. Goswami, M.M. Rahman, E.K. Stefanakos, Thermal energy storage technologies and systems for concentrating solar power plants. Prog. Energy Combust. Sci. 39, 285–319 (2013)

    Google Scholar 

  3. M. Liu, N.S. Tay, S. Bell, M. Belusko, R. Jacob, G. Will, W. Saman, F. Bruno, Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew. Sustain. Energy Rev. 53, 1411–1432 (2016)

    Google Scholar 

  4. T. Baumann, S. Zunft, Properties of granular materials as heat transfer and storage medium in CSP application. Sol. Energy Mater. Sol. Cells 143, 38–47 (2015)

    Google Scholar 

  5. C.K. Ho, A review of high-temperature particle receivers for concentrating solar power. Appl. Therm. Eng. 109, 958–969 (2016)

    Google Scholar 

  6. W. Lipiński, J.H. Davidson, S. Haussener, J.F. Klausner, A.M. Mehdizadeh, J. Petrasch, A. Steinfeld, L. Venstrom, Review of heat transfer research for solar thermochemical applications. J. Therm. Sci. Eng. Appl. 5, 021005 (2013)

    Google Scholar 

  7. A.J. Schrader, H.E. Bush, D. Ranjan, P.G. Loutzenhiser, Aluminum-doped calcium manganite particles for solar thermochemical energy storage: reactor design, particle characterization, and heat and mass transfer modeling. Int. J. Heat Mass Transf. 152, 119461 (2020)

    Google Scholar 

  8. D. Barlev, R. Vidu, P. Stroeve, Innovation in concentrated solar power. Sol. Energy Mater. Sol. Cells 95, 2703–2725 (2011)

    Google Scholar 

  9. M.T. Islam, N. Huda, A. Abdullah, R. Saidur, A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends. Renew. Sustain. Energy Rev. 91, 987–1018 (2018)

    Google Scholar 

  10. M. Caccia, M. Tabandeh-Khorshid, G. Itskos, A. Strayer, A. Caldwell, S. Pidaparti, S. Singnisai, A. Rohskopf, A. Schroeder, D. Jarrahbashi, Ceramic-metal composites for heat exchangers in concentrated solar power plants. Nature 562, 406–409 (2018)

    ADS  Google Scholar 

  11. E. González-Roubaud, D. Pérez-Osorio, C. Prieto, Review of commercial thermal energy storage in concentrated solar power plants: steam vs. molten salts. Renew. Sustain. Energy Rev. 80, 133–148 (2017)

    Google Scholar 

  12. L.A. Weinstein, J. Loomis, B. Bhatia, D.M. Bierman, E.N. Wang, G. Chen, Concentrating solar power. Chem. Rev. 115, 12797–12838 (2015)

    Google Scholar 

  13. H. Wang, V.P. Sivan, A. Mitchell, G. Rosengarten, P.E. Phelan, L.P. Wang, Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol. Energy Mater. Sol. Cells 137, 235–242 (2015)

    Google Scholar 

  14. S. Shan, C. Chen, P.G. Loutzenhiser, D. Ranjan, Z. Zhou, Z.M. Zhang, Spectral emittance measurements of micro/nanostructures in energy conversion: a review. Front. Energy (2020). https://doi.org/10.1007/s11708-020-0693-0

    Article  Google Scholar 

  15. F. Crespi, G. Gavagnin, D. Sánchez, G.S. Martínez, Supercritical carbon dioxide cycles for power generation: a review. Appl. Energy 195, 152–183 (2017)

    Google Scholar 

  16. C.K. Ho, B.D. Iverson, Review of high-temperature central receiver designs for concentrating solar power. Renew. Sustain. Energy Rev. 29, 835–846 (2014)

    Google Scholar 

  17. G. Alva, L. Liu, X. Huang, G. Fang, Thermal energy storage materials and systems for solar energy applications. Renew. Sustain. Energy Rev. 68, 693–706 (2017)

    Google Scholar 

  18. Z. Ma, G. Glatzmaier, M. Mehos, Development of solid particle thermal energy storage for concentrating solar power plants that use fluidized bed technology. Energy Procedia 49, 898–907 (2014)

    Google Scholar 

  19. S. Guillot, A. Faik, A. Rakhmatullin, J. Lambert, E. Veron, P. Echegut, C. Bessada, N. Calvet, X. Py, Corrosion effects between molten salts and thermal storage material for concentrated solar power plants. Appl. Energy 94, 174–181 (2012)

    Google Scholar 

  20. N.P. Siegel, M.D. Gross, R. Coury, The development of direct absorption and storage media for falling particle solar central receivers. J. Sol. Energy Eng. 137, 041003 (2015)

    Google Scholar 

  21. C.K. Ho, J.M. Christian, J.E. Yellowhair, K. Armijo, W.J. Kolb, S. Jeter, M. Golob, C. Nguyen, On-sun performance evaluation of alternative high-temperature falling particle receiver designs. J. Sol. Energy Eng. 141, 011009 (2019)

    Google Scholar 

  22. H. Al-Ansary, A. El-Leathy, S. Jeter, M. Golob, C. Nguyen, E. Djajadiwinata, S. Alaqel, R. Saeed, S. Abdel-Khalik, Z. Al-Suhaibani, Design features of the world’s first commercial concentrating solar power plant using the particle heating receiver concept. In: Proc. ASME 2019 13th Int. Conf. Ener. Sust., Paper No. ES2019-3856 (2019)

  23. N.P. Siegel, M.D. Gross, C.K. Ho, T. Phan, J. Yuan, Physical properties of solid particle thermal energy storage media for concentrating solar power applications. Energy Procedia 49, 1015–1023 (2014)

    Google Scholar 

  24. C.K. Ho, J.M. Christian, D. Romano, J. Yellowhair, N.P. Siegel, L. Savoldi, R. Zanino, Characterization of particle flow in a free-falling solar particle receiver. J. Sol. Energy Eng. 139, 021011 (2017)

    Google Scholar 

  25. G. Evans, W. Houf, R. Greif, C. Crowe, Gas-particle flow within a high temperature solar cavity receiver including radiation heat transfer. J. Sol. Energy Eng. 109, 134–142 (1987)

    Google Scholar 

  26. A. Kumar, J.-S. Kim, W. Lipiński, Radiation absorption in a particle curtain exposed to direct high-flux solar irradiation. J. Sol. Energy Eng. 140, 061007 (2018)

    Google Scholar 

  27. J.R. Howell, M.P. Menguc, R. Siegel, Thermal Radiation Heat Transfer, 6th edn. (CRC Press, New York, 2015)

    Google Scholar 

  28. M.V. Bagepalli, J.D. Yarrington, A.J. Schrader, Z.M. Zhang, D. Ranjan, P.G. Loutzenhiser, Measurement of flow properties coupled to experimental and numerical analyses of dense, granular flows for solar thermal energy storage. Sol. Energy 207, 77–90 (2020) 

    ADS  Google Scholar 

  29. H.J. Lee, A.C. Bryson, Z.M. Zhang, Measurement and modeling of the emittance of silicon wafers with anisotropic roughness. Int. J. Thermophys. 28, 918–932 (2007)

    ADS  Google Scholar 

  30. Q. Cheng, P. Yang, Z.M. Zhang, Radiative properties of ceramic Al2O3, AlN, and Si3N4—I. Experiments. Int. J. Thermophys. 37, 62 (2016)

    ADS  Google Scholar 

  31. P. Yang, C. Chen, Z.M. Zhang, A dual-layer structure with record-high solar reflectance for daytime radiative cooling. Sol. Energy 169, 316–324 (2018)

    ADS  Google Scholar 

  32. V.R. Weidner, J.J. Hsia, Reflection properties of pressed polytetrafluoroethylene powder. J. Opt. Soc. Am. 71, 856–861 (1981)

    ADS  Google Scholar 

  33. Z.M. Zhang, Nano/microscale Heat Transfer, 2nd edn. (Springer Nature, Switzerland AG, 2020)

    MATH  Google Scholar 

  34. E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, New York, 1998)

    Google Scholar 

  35. Z.M. Zhang, B.I. Choi, M.I. Flik, A.C. Anderson, Infrared refractive indices of LaAlO3, LaGaO3, and NdGaO3. J. Opt. Soc. Am. B 11, 2252–2257 (1994)

    ADS  Google Scholar 

  36. T.J. Bright, J.I. Watjen, Z.M. Zhang, C. Muratore, A.A. Voevodin, Optical properties of HfO2 thin films deposited by magnetron sputtering: from the visible to the far-infrared. Thin Solid Films 520, 6793–6802 (2012)

    ADS  Google Scholar 

  37. P. Yang, Q. Cheng, Z.M. Zhang, Radiative properties of ceramic Al2O3, AlN, and Si3N4—II. Modeling. Int. J. Thermophys. 38, 124 (2017)

    ADS  Google Scholar 

  38. D. Aspnes, J. Theeten, F. Hottier, Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry. Phys. Rev. B 20, 3292–3302 (1979)

    ADS  Google Scholar 

  39. C. Pecharromán, J. Iglesias, Effective dielectric properties of packed mixtures of insulator particles. Phys. Rev. B 49, 7137–7147 (1994)

    ADS  Google Scholar 

  40. V.M. Zolotarev, R.K. Mamedov, A.N. Bekhterev, B.Z. Volchek, Spectral emissivity of a Globar lamp in the 2–50-μm region. J. Opt. Technol. 74, 378–384 (2007)

    Google Scholar 

  41. D. De Sousa Meneses, M. Balat-Pichelin, O. Rozenbaum, L. del Campo, P. Echegut, Optical indices and transport scattering coefficient of pyrolytic boron nitride: a natural thermal barrier coating for solar shields. J. Mater. Sci. 51, 4660–4669 (2016)

    ADS  Google Scholar 

  42. X.J. Wang, J.D. Flicker, B.J. Lee, W.J. Ready, Z.M. Zhang, Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes. Nanotechnology 20, 215704 (2009)

    ADS  Google Scholar 

  43. H. Wang, X.L. Liu, L.P. Wang, Z.M. Zhang, Anisotropic optical properties of silicon nanowire arrays based on effective medium calculation. Int. J. Therm. Sci. 65, 62–69 (2013)

    Google Scholar 

  44. J.C.M. Garnett, Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. A 203, 385–420 (1904)

    ADS  MATH  Google Scholar 

  45. O. Levy, D. Stroud, Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers. Phys. Rev. B 56, 8035–8046 (1997)

    ADS  Google Scholar 

  46. D.A.G. Bruggeman, Calculation of different physical constants of heterogeneous substance. I. Dielectric constants and conductivities of the mixed bodies made of isotropic substances (English translation from German). Ann. Phys. (Leipzig) 24, 665–679 (1935)

    ADS  Google Scholar 

  47. G.L. Carr, S. Perkowitz, D.B. Tanner, Far-infrared properties of inhomogeneous materials. Infrared Millimeter Waves 13, 171–263 (1985)

    Google Scholar 

  48. Z.M. Zhang, C. Zhu, L.M. Hanssen, Absolute detector calibration applied to nonlinearity error correction in FT-IR measurements. Appl. Spectrosc. 51, 576–579 (1997)

    ADS  Google Scholar 

  49. L.M. Kaplan, R.U. Hanssen, Datla, Testing the radiometric accuracy of Fourier transform infrared transmittance measurements. Appl. Opt. 36, 8896–8908 (1997)

    ADS  Google Scholar 

  50. ASTM G173-03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface (ASTM International, West Conshocken, 2012)

    Google Scholar 

  51. B.L. Wood, Infrared absorption of defects in quartz. J. Phys. Chem. Solids 13, 326–336 (1960)

    ADS  Google Scholar 

  52. J. Glasscock, P. Barnes, I. Plumb, A. Bendavid, P. Martin, Structural, optical and electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition. Thin Solid Films 516, 1716–1724 (2008)

    ADS  Google Scholar 

  53. S. Onari, T. Arai, K. Kudo, Infrared lattice vibrations and dielectric dispersion in α-Fe2O3. Phys. Rev. B 16, 1717–1721 (1977)

    ADS  Google Scholar 

  54. P. Coray, W. Lipiński, A. Steinfeld, Experimental and numerical determination of thermal radiative properties of ZnO particulate media. J. Heat Transf. 132, 012701 (2010)

    Google Scholar 

  55. K. Ganesan, J. Randrianalisoa, W. Lipiński, Effect of morphology on spectral radiative properties of three-dimensionally ordered macroporous ceria packed bed. J. Heat Transf. 135, 122701 (2013)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office Award Number EE0008372. The views expressed herein do not necessarily represent the views of the U.S. Department of Energy or the United States Government. The authors would like to thank Prof. Shreyes Melkote and Mr. Vinh Nguyen for their help in obtaining the particle images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuomin M. Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Yang, C., Ranjan, D. et al. Spectral Radiative Properties of Ceramic Particles for Concentrated Solar Thermal Energy Storage Applications. Int J Thermophys 41, 152 (2020). https://doi.org/10.1007/s10765-020-02733-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02733-5

Keywords

Navigation