Skip to main content
Log in

Investigation on the Surface Tension and Viscosity of (dimethylsulfoxide + alcohol) Mixtures by Using Gradient Theory and Eyring’s Rate Theory

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The present study has been dedicated to modeling the surface tension and viscosity of (dimethylsulfoxide + alcohol) mixtures. The self and cross-association have been considered for both alcohol and dimethylsulfoxide, and the Cubic-Plus-Association equation of state is applied to the phase equilibrium calculations. The binary interaction parameters are obtained according to the experimental phase equilibrium data, taking advantage of accurate description of the phase equilibrium. Then the gradient theory is used to describe the surface tension and interface of (dimethylsulfoxide + alcohol) mixtures. Moreover, the Eyring’s rate theory is used to model the viscosity of (dimethylsulfoxide + alcohol) binary system. For more accurate description of the viscosity, an adjustable parameter of the Eyring’s rate theory is fitted based on the experimental viscosity data. The results of this investigation show that the application of association performs well for modeling the surface tension and viscosity of (dimethylsulfoxide + alcohol) mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(a\) :

Attractive parameter in CPA EOS [J·m3·mol−2]

\(a_{0}\) :

Adjustable parameter of the CPA EOS

\(AAD\) :

Average absolute deviation (%)

\(b\) :

Covolume in the EOS [m3·mol−1]

\(A_{r} , B_{r}\) :

The adjustable parameters of the gradient theory

\(c_{1}\) :

Adjustable parameter of the CPA EOS

\(CPA\) :

Cubic-Plus-Association

\(C_{r}\) :

An adjustable parameter of the Eyring model

\(f_{0}\) :

Helmholtz free energy density [J·m−3]

\(g\) :

Simplified radial distribution function

\(k_{ij}\) :

Binary interaction parameter for the attractive parameter in the CPA EOS

\(N\) :

The number of experimental points

\(N_{0}\) :

Avogadro constant

\(P\) :

Pressure [Pa]

\(R\) :

Ideal gas constant [J·mol−1·K−1]

\(T\) :

Temperature [K]

\(T_{c}\) :

Critical temperature [K]

\(T_{r}\) :

Reduced temperature

\(X_{{A_{i} }}\) :

The pure component i mole fraction (not bonded at site A)

\(x_{i}\) :

Mole fraction of each component i in the liquid phase

\(y_{i}\) :

Mole fraction of each component i in the vapor phase

\(z\) :

Position in the interface [m]

\(Z\) :

Compressibility factor

\(\beta^{{A_{i} B_{i} }}\) :

The association volume

\(\Delta^{{A_{i} B_{j} }}\) :

Association strength

\(\varepsilon^{{A_{i} B_{i} }}\) :

The association energy [J·mol−1]

\(\eta\) :

Reduced density

\(\kappa\) :

Influence parameter [J·m5·mol−2]

\(\mu\) :

Chemical potential [J·mol−1]

\(\rho\) :

Mole density [mol·m−3]

\(\sigma\) :

Surface tension [N·m−1]

\(\varOmega\) :

Grand thermodynamic potential [J·m−3]

\(B\) :

Bulk

\(i,j\) :

Components i and j

\(S\) :

Surface

\(assoc\) :

Association

\(calc\) :

Calculated result

\(exp\) :

Experimental

\(L\) :

Liquid

\(phys\) :

Physical

\(ref\) :

Reference variable

\(V\) :

Vapor

References

  1. C. Hou, C. Ji, R. Qu, C. Wang, C. Wang, Kinetics of copolymerization and degradation of poly [acrylonitrile-co-(amino ethyl-2-methyl propanoate)]. Eur. Polym. J. 42, 1093–1098 (2006)

    Google Scholar 

  2. D. Yuan, Y. Liu, Electrochemical preparation La–Co magnetic alloy films from dimethylsulfoxide. Mater. Chem. Phys. 96, 79–83 (2006)

    Google Scholar 

  3. S.D. Yeo, E. Kiran, Formation of polymer particles with supercritical fluids: a review. J. Supercrit. Fluids 34, 287–308 (2005)

    Google Scholar 

  4. M.K. Pasha, J.R. Dimmock, M.D. Hollenberg et al., Enhanced activity of human N-myristoyltransferase by dimethyl sulfoxide and related solvents in the presence of serine/threonine-containing peptide substrates. Biochem. Pharmacol. 64, 1461–1467 (2002)

    Google Scholar 

  5. H. Habibi, A. Hekmat-Nazemi, A. Kamran-Pirzaman et al., Modeling viscosity of alcohols based on the CPA-EoS + f-theory. J. Mol. Liq. 220, 558–565 (2016)

    Google Scholar 

  6. F. Giro, M. Goncalves, A.G. Ferreira et al., Viscosity and density data of the system water + n-pentyl acetate +methanol. Fluid Phase Equilib. 204, 217–232 (2003)

    Google Scholar 

  7. R. Macías-Salinas, F. García-Sánchez, G. Eliosa-Jiménez, An equation-of-state-based viscosity model for non-ideal liquid mixtures. Fluid Phase Equilib. 210, 319–334 (2003)

    Google Scholar 

  8. T.B. Fan, L.S. Wang, A viscosity model based on Peng-Robinson equation of state for light hydrocarbon liquids and gases. Fluid Phase Equilib. 247, 59–69 (2006)

    Google Scholar 

  9. X.Q. Guo, L.S. Wang, S.X. Rong et al., Viscosity model based on equations of state for hydrocarbon liquids and gases. Fluid Phase Equilib. 139, 405–421 (1997)

    Google Scholar 

  10. X.Q. Guo, C.Y. Sun, S.X. Rong et al., Equation of state analog correlations for the viscosity and thermal conductivity of hydrocarbons and reservoir fluids. J. Petrol. Sci. Eng. 30, 15–27 (2001)

    Google Scholar 

  11. S. Khosharay, Suggestion of mixing rule for parameters of PRμ model for light liquid hydrocarbon mixtures. Korean J. Chem. Eng. 31, 1246–1252 (2014)

    Google Scholar 

  12. S. Khosharay, R. Karimi, K. Khosharay, Modeling the viscosity for (nC5 + nC8), (nC5 + nC10), (nC8 + nC10) and (nC5 + nC8 + nC10) systems with Peng-Robinson viscosity equation of state. Period. Polytech. Chem. Eng. 60, 259–265 (2016)

    Google Scholar 

  13. Z.F. Wang, L.S. Wang, T.B. Fan, Densities and viscosities of ternary mixtures of heptane, octane, nonane, and hexyl benzene from 293.15 K to 313.15 K. J. Chem. Eng. Data 52, 1866–1871 (2007)

    Google Scholar 

  14. S. Khosharay, M. Pierantozzi, G. Di Nicola, Modeling investigation on the viscosity of pure refrigerants and their liquid mixtures by using the Patel-Teja viscosity equation of state. Int. J. refrigeration. 85, 255–267 (2018)

    Google Scholar 

  15. M.A. Monsalvo, A. Baylaucq, S.E. Quiñones-Cisneros et al., High-pressure viscosity behavior of x 1,1,1,2tetrafluoroethane (HFC-134a) + (1 − x) triethylene glycol dimethylether (TriEGDME) mixtures: measurements and modeling. Fluid Phase Equilib. 247, 70–79 (2006)

    Google Scholar 

  16. M.A. Monsalvo, A. Baylaucq, P. Reghem et al., Viscosity measurements and correlations of binary mixtures: 1,1,1,2-tetrafluoroethane (HFC134a) + tetraethylene glycol dimethylether (TEGDME). Fluid Phase Equilib. 233, 1–8 (2005)

    Google Scholar 

  17. S.E. Quiñones-Cisneros, J. García, J. Fernández et al., Phase and viscosity behaviour of refrigerant–lubricant mixtures. Int. J. Refrigeration 28, 714–724 (2005)

    Google Scholar 

  18. S.E. Quiñones-Cisneros, M.L. Huber, U.K. Deiters, Correlation for the viscosity of sulfur hexafluoride (SF6) from the triple point to 1000 K and pressures to 50 MPa. J. Phys. Chem. Ref. Data 41, 23102 (2012)

    Google Scholar 

  19. M. Tjahjono, M. Garland, A new modified parachor model for predicting surface compositions of binary liquid mixtures. On the importance of surface volume representation. J. Colloid Interface Sci. 345, 528–537 (2010)

    ADS  Google Scholar 

  20. H. Lin, Y.Y. Duan, Surface tension of 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea), and their binary mixture HFC-143a/227ea. Int. J. Thermophys. 24, 1495–1508 (2003)

    ADS  Google Scholar 

  21. G. Zhao, S. Bi, J. Wu et al., Surface tension of propane (R-290) + 1,1-Difluoroethane (R-152a) from (248 to 328) K. J. Chem. Eng. Data 55, 3077–3079 (2010)

    Google Scholar 

  22. S. Enders, H. Kahl, Interfacial properties of water + alcohol mixtures. Fluid Phase Equilib. 263, 160–167 (2008)

    Google Scholar 

  23. S. Sugden, VI-The variation of surface tension with temperature and some related functions. J. Chem. Soc. Trans. 125, 32–41 (1924)

    Google Scholar 

  24. A. Laaksonen, M. Kulmala, An explicit cluster model for binary nuclei in water–alcohol systems. J. Chem. Phys. 95, 6745–6748 (1991)

    ADS  Google Scholar 

  25. A. Bagheri, A. Abolhasani, A.R. Moghadasi et al., Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures. J. Chem. Thermodyn. 63, 108–115 (2013)

    Google Scholar 

  26. M.M.H. Bhuiyan, J. Ferdaush, M.H. Uddin, Densities and viscosities of binary mixtures of dimethylsulfoxide + aliphatic lower alkanols (C1–C3) at temperatures from T = 303.15 K to T = 323.15 K. J. Chem. Thermodyn. 39, 675–683 (2007)

    Google Scholar 

  27. A. Bagheri, M. Fazli, M. Bakhshaei, Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols. J. Chem. Thermodyn. 101, 236–244 (2016)

    Google Scholar 

  28. R. Tahery, S. Khosharay, Surface tension of binary mixtures of dimethylsulfoxide + methanol, ethanol and propanol between 293.15 and 308.15 K. J. Mol. Liq. 247, 354–365 (2017)

    Google Scholar 

  29. G.M. Kontogeorgis, E.C. Voutsas, I.V. Yakoumis et al., An equation of state for associating fluids. Ind. Eng. Chem. Res. 35, 4310–4318 (1996)

    Google Scholar 

  30. G.M. Kontogeorgis, I.V. Yakoumis, H. Meijer et al., Multicomponent phase equilibrium calculations for water–methanol–alkane mixtures. Fluid Phase Equilib. 158–160, 201–209 (1999)

    Google Scholar 

  31. M.B. Oliveira, I.M. Marrucho, J.A.P. Coutinho et al., Surface tension of chain molecules through a combination of the gradient theory with the CPA EoS. Fluid Phase Equilib. 267, 83–91 (2008)

    Google Scholar 

  32. I. Tsivintzelis, G.M. Kontogeorgis, M.L. Michelsen et al., Modeling Phase Equilibria for Acid Gas Mixtures Using the CPA Equation of State. I. Mixtures with H2S. AIChE J. 56, 2965–2981 (2010)

    Google Scholar 

  33. M.B. Oliveira, A.J. Queimada, G.M. Kontogeorgis et al., Evaluation of the CO2 behavior in binary mixtures with alkanes, alcohols, acids and esters using the Cubic-Plus-Association Equation of State. J. Supercrit. Fluids 55, 876–892 (2011)

    Google Scholar 

  34. I. Tsivintzelis, G.M. Kontogeorgis, M.L. Michelsen et al., Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: binary mixtures with CO2. Fluid Phase Equilib. 306, 38–56 (2011)

    Google Scholar 

  35. G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Science 27, 1197–1203 (1972)

    Google Scholar 

  36. M.S. Wertheim, Fluids with highly directional attractive forces I. Statistical thermodynamics. J. Statist. Phys. 35, 19–34 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  37. M.S. Wertheim, Fluids with highly directional attractive forces II. Thermodynamic perturbation theory and integral equations. J. Statist. Phys. 35, 35–47 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  38. M.S. Wertheim, Fluids with highly directional attractive forces III. Multiple attraction sites. J. Stat. Phys. 42, 459–476 (1986)

    ADS  MathSciNet  Google Scholar 

  39. M.S. Wertheim, Fluids with highly directional attractive forces IV. Equilibrium polymerization. J. Stat. Phys. 42, 477–492 (1986)

    ADS  MathSciNet  Google Scholar 

  40. S.H. Huang, M. Radosz, Equation of state for small, large, polydisperse, and associating molecules. Ind. Eng. Chem. Res. 29, 2284–2294 (1990)

    Google Scholar 

  41. E.C. Voutsas, I.V. Yakoumis, D.P. Tassios, Prediction of phase equilibria in water/alcohol/alkane systems. Fluid Phase Equilib. 158–160, 151–163 (1999)

    Google Scholar 

  42. A.J. Queimada, C. Miqueu, I.M. Marrucho et al., Modeling vapor–liquid interfaces with the gradient theory in combination with the CPA equation of state. Fluid Phase Equilib. 228–229, 479–485 (2005)

    Google Scholar 

  43. G.T. Dee, B.B. Sauer, The molecular weight and temperature dependence of polymer surface tension: comparison of experiment with interface gradient theory. J. Colloid Interface Sci. 152, 85–103 (1992)

    ADS  Google Scholar 

  44. H. Kahl, S. Enders, Calculation of surface properties of pure fluids using density gradient theory and SAFT-EOS. Fluid Phase Equilib. 172, 27–42 (2000)

    Google Scholar 

  45. S. Khosharay, F. Varaminian, Modeling interfacial tension of (CH4 + N2) + H2O and (N2 + CO2) + H2O systems using linear gradient theory. Korean J. Chem. Eng. 30, 724–732 (2013)

    Google Scholar 

  46. S. Khosharay, M. Seyfi Mazraeno, F. Varaminian, Modeling the surface tension of refrigerant mixtures with linear gradient theory. Int. J. Refrigeration. 36, 2223–2232 (2013)

    Google Scholar 

  47. S. Khosharay, M. Seyfi Mazraeno, F. Varaminian et al., A proposed combination model for predicting surface tension and surface properties of binary refrigerant mixtures. Int. J. Refrigeration. 40, 347–361 (2014)

    Google Scholar 

  48. S. Khosharay, M. Abolala, F. Varaminian, Modeling the surface tension and surface properties of (CO2 +H2O) and (H2S + H2O) with gradient theory in combination with sPC–SAFT EOS and a new proposed influence parameter. J. Mol. Liq. 198, 292–298 (2014)

    Google Scholar 

  49. S. Khosharay, Linear gradient theory for modeling investigation on the surface tension of (CH4 + H2O), (N2 + H2O) and (CH4 + N2) + H2O systems. J. Nat. Gas Sci. Eng. 23, 474–480 (2015)

    Google Scholar 

  50. S. Khosharay, N. Rezakhani, Using a new proposed influence parameter of gradient theory for CH4/n-alkane binary systems: what advances can be achieved? Period. Polytech. Chem. Eng. 60, 282–289 (2016)

    Google Scholar 

  51. S. Khosharay, S. Tourang, F. Tajfar, Modeling surface tension and interface of (water + methanol),(water + ethanol), (water + 1-propanol), and (water + MEG) mixtures. Fluid Phase Equilib. 454, 99–110 (2017)

    Google Scholar 

  52. C. Miqueu, B. Mendiboure, A. Graciaa, J. Lachaise, Modelling of the surface tension of pure components with the gradient theory of fluid interfaces: a simple and accurate expression for the influence parameters. Fluid Phase Equilib. 207, 225–246 (2003)

    Google Scholar 

  53. S. Glasstone, H. Ering, K.J. Laidler, The theory of rate process (McGraw-Hill, New York, 1941)

    Google Scholar 

  54. G.K. Folas, J. Gabrielsen, M.L. Michelsen, E.H. Stenby, G.M. Kontogeorgis, Application of the Cubic-Plus-Association (CPA) Equation of State to Cross-Associating Systems. Ind. Eng. Chem. Res. 44, 3823–3833 (2005)

    Google Scholar 

  55. A.N. Campbe, The density and vapour pressure of dimethylsulfoxide at various temperatures and the (hypothetical) critical density. Can. J. Chem. 57, 705–707 (1979)

    Google Scholar 

  56. Z.L. Grigoryan, E.A. Kazoyan, S.A. Markaryan, Thermodynamics of liquid–vapor phase equilibrium in dimethylSulfoxide–alkanol systems in the range of 293.15–323.15 K. Russ. J. Phys. Chem. A 89, 1790–1794 (2015)

    Google Scholar 

  57. E.A. Kazoyan, A.S. Khachatryan, Liquid-Vapor Equilibrium in the Dimethyl Sulfoxide-Methanol System. Russ. J. Appl. Chem. 85, 1335–1338 (2012)

    Google Scholar 

  58. B. Kaczmarek, A. Radecki, Vapor-liquid equilibria in binary systems containing ethanol with hexamethyldisiloxane and dimethyl sulfoxide. J. Chem. Eng. Data 34, 195–197 (1989)

    Google Scholar 

  59. C.M. Kinart, W.J. Kinart, A. Bald, The measurements of the surface tension of mixtures of dimethyl sulfoxide with methyl, ethyl and propyl alcohols. Phys. Chem. Liq. 37, 317–321 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Hernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, A., Khosharay, S. Investigation on the Surface Tension and Viscosity of (dimethylsulfoxide + alcohol) Mixtures by Using Gradient Theory and Eyring’s Rate Theory. Int J Thermophys 41, 150 (2020). https://doi.org/10.1007/s10765-020-02732-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02732-6

Keywords

Navigation