Skip to main content
Log in

Determination of dielectric properties of titanium carbide fabricated by microwave synthesis with Ti-bearing blast furnace slag

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery; it can alleviate the environmental pressure caused by slag stocking. The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method. Combining the transient dipole and large n bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed. The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Y.Z. Wang, J.L. Zhang, Z.J. Liu, and C.B. Du, Carbothermic reduction reactions at the metal-slag interface in Ti-bearing slag from a blast furnace, JOM, 69(2017), No. 11, p. 2397.

    Article  CAS  Google Scholar 

  2. J.X. Liu, G.J. Cheng, Z.G. Liu, M.S. Chu, and X.X. Xue, Reduction process of pellet containing high chromic vanadium-titanium magnetite in cohesive zone, Steel Res. Int., 86(2015), No. 7, p. 808.

    Article  CAS  Google Scholar 

  3. S. Wang, Y.F. Guo, T. Jiang, L. Yang, F. Chen, F.Q. Zheng, X.L. Xie, and M.J. Tang, Reduction behaviors of iron, vanadium and titanium oxides in smelting of vanadium titanomagnetite metallized pellets, JOM, 69(2017), No. 9, p. 1646.

    Article  CAS  Google Scholar 

  4. S. Wang, M. Chen, Y.F. Guo, T. Jiang, and B.J. Zhao, Reduction and smelting of vanadium titanomagnetite metallized pellets, JOM, 71(2019), No. 3, p. 1144.

    Article  CAS  Google Scholar 

  5. Y.M. Zhang, L.N. Wang, D.S. Chen, W.J. Wang, Y.H. Liu, H.X. Zhao, and T. Qi, A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 131.

    Article  CAS  Google Scholar 

  6. M. Zhou, T. Jiang, S.T. Yang, and X.X. Xue, Vanadium-titanium magnetite ore blend optimization for sinter strength based on iron ore basic sintering characteristics, Int. J. Miner. Process., 142(2015), p. 125.

    Article  CAS  Google Scholar 

  7. C. Lv, K. Yang, S.M. Wen, S.J. Bai, and Q.C. Feng, A new technique for preparation of high-grade titanium slag from titanomagnetite concentrate by reduction-melting-magnetic separation processing, JOM, 69(2017), No. 10, p. 1801.

    Article  CAS  Google Scholar 

  8. H.H. Lü, M.Z. Wu, Z.L. Zhang, X.R. Wu, L.S. Li, and Z.F. Gao, Co-precipitation behaviour of titanium-containing silicate solution, Chem. Pap., 70(2016), No. 12, p. 1632.

    Article  Google Scholar 

  9. Y.J. Zhang, T. Qi, and Y. Zhang, A novel preparation of titanium dioxide from titanium slag, Hydrometallurgy, 96(2009), No. 1–2, p. 52.

    Article  CAS  Google Scholar 

  10. Y.F. Guo, S.S. Li, T. Jiang, G.Z. Qiu, and F. Chen, A process for producing synthetic rutile from Panzhihua titanium slag, Hydrometallurgy, 147–148(2014), p. 134.

    Article  Google Scholar 

  11. D. Wang, J.L. Chu, J. Li, T. Qi, and W.J. Wang, Anti-caking in the production of titanium dioxide using low-grade titanium slag via the NaOH molten salt method, Powder Technol., 232(2012), p. 99.

    Article  CAS  Google Scholar 

  12. T. Jiang, X.X. Xue, P.N. Duan, X. Liu, S.H. Zhang, and R. Liu, Carbothermal reduction-nitridation of titania-bearing blast furnace slag, Ceram. Int., 34(2008), No. 7, p. 1643.

    Article  CAS  Google Scholar 

  13. G. Chen, J. Chen, and J.H. Peng, Effects of mechanical activation on structural and microwave absorbing characteristics of high titanium slag, Powder Technol., 286(2015), p. 218.

    Article  CAS  Google Scholar 

  14. C.B. Cheng, R.H. Fan, Z.Y. Wang, Q. Shao, X.K. Guo, P.T. Xie, Y.S. Yin, Y.L. Zhang, L.Q. An, Y.H. Lei, J.E. Ryu, A. Shankar, and Z.H. Guo, Tunable and weakly negative permittivity in carbon/silicon nitride composites with different carbonizing temperatures, Carbon, 125(2017), p. 103.

    Article  CAS  Google Scholar 

  15. T. Ono and M. Ueki, Effect of graphite addition on the microstructure and mechanical properties of hot-pressed titanium carbide, [in] S. Somiya, ed., Advanced Materials’ 93. Ceramics, Powders, Corrosion and Advanced Processing, Elsevier, Amsterdam, Netherlands, 1994, p. 585.

    Chapter  Google Scholar 

  16. A.M. Shul’pekov and G.V. Lyamina, Electrical and thermomechanical properties of materials based on nonstoichiometric titanium carbide prepared by self-propagating high-temperature synthesis, Inorg. Mater., 47(2011), No. 7, p. 722.

    Article  Google Scholar 

  17. L. Pan, T. Shoji, A. Nagataki, and Y. Nakayama, Field emission properties of titanium carbide coated carbon nanotube arrays, Adv. Eng. Mater., 9(2007), No. 7, p. 584.

    Article  CAS  Google Scholar 

  18. Z.W. Peng, J.Y. Hwang, B.G. Kim, J. Mouris, and R. Hutcheon, Microwave absorption capability of high volatile bituminous coal during pyrolyisis, Energy Fuels, 26(2012), No. 8, p. 5146.

    Article  CAS  Google Scholar 

  19. G.B. Dudley, R. Richert, and A.E. Stiegman, On the existence of and mechanism for microwave-specific reaction rate enhancement, Chem. Sci., 6(2015), No. 4, p. 2144.

    Article  CAS  Google Scholar 

  20. M. Damm and C.O. Kappe, Parallel microwave chemistry in silicon carbide reactor platforms: An in-depth investigation into heating characteristics, Mol. Diversity, 13(2009), No. 4, p. 529.

    Article  CAS  Google Scholar 

  21. C.A. Kuhnen, E.L. Dall’Oglio, and P.T. de Sousa, Quantum tunneling contribution for the activation energy in microwave-induced reactions, J. Phys. Chem. A, 121(2017), No. 30, p. 5735.

    Article  CAS  Google Scholar 

  22. S.H. Li, C. Akyel, and R.G. Bosisio, Precise calculations and measurements on the complex dielectric constant of lossy materials using TM010 cavity perturbation techniques, IEEE Trans. Microwave Theory Tech., 29(1981), No. 10, p. 1041.

    Article  Google Scholar 

  23. Y.P. Zhang, E. Li, J. Zhang, C.Y. Yu, H. Zheng, and G.F. Guo, A broadband variable-temperature test system for complex permittivity measurements of solid and powder materials, Rev. Sci. Instrum., 89(2018), No. 2, art. No. 024701.

    Article  Google Scholar 

  24. Dielectric Constant [2010-12-14]. http://www.vias.org/encyclopedia/phys_dielectric_const.htm

  25. R. Buchner, J. Barthel, and J. Stauber, The dielectric relaxation of water between 0°C and 35°C, Chem. Phys. Lett., 306(1999), No. 1–2, p. 57.

    Article  CAS  Google Scholar 

  26. T. Meissner and F.J. Wentz, The complex dielectric constant of pure and sea water from microwave satellite observations, IEEE Trans. Geosci. Remote Sens., 42(2004), No. 9, p. 1836.

    Article  Google Scholar 

  27. J.W. Chen, Y. Jiao, and X.D. Wang, Thermodynamic studies on gas-based reduction of vanadium titano-magnetite pellets, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 822.

    Article  CAS  Google Scholar 

  28. Z.W. Peng, X.L. Lin, Z.Y. Li, J.Y. Hwang, B.G. Kim, Y.B. Zhang, G.H. Li, and T. Jiang, Dielectric characterization of Indonesian low-rank coal for microwave processing, Fuel Process. Technol., 156(2017), p. 171.

    Article  CAS  Google Scholar 

  29. D. Beneroso, A. Albero-Ortiz, J. Monzó-Cabrera, A. Díaz-Morcillo, A. Arenillas, and J.A. Menéndez, Dielectric characterization of biodegradable wastes during pyrolysis, Fuel, 172(2016), p. 146.

    Article  CAS  Google Scholar 

  30. X.L. Zhang, D.O. Hayward, and D.M.P. Mingos, Microwave dielectric heating behavior of supported MoS2 and Pt catalysts, Ind. Eng. Chem. Res., 40(2001), No. 13, p. 2810.

    Article  CAS  Google Scholar 

  31. R. Meredith, Engineers’ Handbook of Industrial Microwave Heating, The Institution of Engineering and Technology, London, 1998.

    Book  Google Scholar 

  32. D.M. Pozar, Microwave Engineering, 4th ed., John Wiley & Sons. Inc., New York, 2011.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFC1900500), the National Natural Science Foundation of China (No. 51961020), the Key Technology Research and Industrialization Application Demonstration Project of the Renewable Multi-energy Complementary (No. 2018IB020), and the Academician Workstation of Kefa Cen (No. 2018IC085).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing-guo Liu or Guang-jun He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Zhang, Lb., Liu, Bg. et al. Determination of dielectric properties of titanium carbide fabricated by microwave synthesis with Ti-bearing blast furnace slag. Int J Miner Metall Mater 28, 88–97 (2021). https://doi.org/10.1007/s12613-020-1985-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1985-4

Keywords

Navigation