Skip to main content
Log in

Boundary effects in General Relativity with tetrad variables

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Varying the gravitational Lagrangian produces a boundary contribution that has various physical applications. It determines the right boundary terms to be added to the action once boundary conditions are specified, and defines the symplectic structure of covariant phase space methods. We study general boundary variations using tetrads instead of the metric. This choice streamlines many calculations, especially in the case of null hypersurfaces with arbitrary coordinates, where we show that the spin-1 momentum coincides with the rotational 1-form of isolated horizons. The additional gauge symmetry of internal Lorentz transformations leaves however an imprint: the boundary variation differs from the metric one by an exact 3-form. On the one hand, this difference helps in the variational principle: gluing hypersurfaces to determine the action boundary terms for given boundary conditions is simpler, including the most general case of non-orthogonal corners. On the other hand, it affects the construction of Hamiltonian surface charges with covariant phase space methods, which end up being generically different from the metric ones, in both first and second-order formalisms. This situation is treated in the literature gauge-fixing the tetrad to be adapted to the hypersurface or introducing a fine-tuned internal Lorentz transformation depending non-linearly on the fields. We point out and explore the alternative approach of dressing the bare symplectic potential to recover the value of all metric charges, and not just for isometries. Surface charges can also be constructed using a cohomological prescription: in this case we find that the exact 3-form mismatch plays no role, and tetrad and metric charges are equal. This prescription leads however to different charges whether one uses a first-order or second-order Lagrangian, and only for isometries one recovers the same charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Its original derivation [1] was in the first-order formalism, and included the contribution of the Barbero-Immirzi term; see Sect. 8.

  2. We thank José Luis Jaramillo for clarifying this point to us.

  3. For a future light cone, it is convenient to denote the normal by \(l_\mu \), to match with the NP literature.

  4. This fact has a subtle consequence in the canonical formalism based on null foliations [26,27,28,29]: the partially gauge fixed action depends on 9 metric components only, and one loses at first sight one of Einstein’s equations. This “missing” equation is usually recovered through a somewhat ad-hoc extension of the phase space. The situation is improved working in the first order formalism, where all equations are recovered without extensions of the phase space; see [29].

  5. Recall that the pull-back on the connection index of the gradient of \(n_\mu \) gives

    $$\begin{aligned} \underset{\leftarrow }{\nabla }{}_\mu n_\nu = \big [\gamma l_\mu - (\alpha +{\bar{\beta }})m_\mu \big ]n_\nu + (\lambda m_\mu +\mu {\bar{m}}_\mu - \nu l_\mu ) m_\nu +\mathrm{c.c.}. \end{aligned}$$

    In this formula only, \(\gamma \) is not our notation for the 2d metric determinant, but one of the NP spin coefficients, \(k_{(n)}=-\gamma -{\bar{\gamma }}\). The term above proportional to \(n_\nu \) is the rotational 1-form, and coincides with minus (3.38). The term proportional to \(m_\mu \) vanishes under the isolated horizon conditions.

  6. The fact that the momentum of the spin-2 configuration variables is a spatial derivative and not a velocity is the gravitational equivalent of the light-cone constraint of light-front field theory in Minkowski spacetime. In the first-order formalism, this crucial relation appears as a second class secondary constraint [29].

  7. And requires the extension of the phase space mentioned in a previous footnote, see also discussion in [29].

  8. While the formalism at future null infinity does not depend on a choice of foliation, it does depend on a choice of normalization for the tangent vector, or in other words, on a choice of conformal factor in the compactification. For recent work aiming at a purely conformal invariant description, see [38].

  9. See, e.g., [47] for the contribution of the torsion to the expansion, and to null geodesic congruences in general.

  10. Excluding the presence of singularities.

References

  1. De Paoli, E., Speziale, S.: A gauge-invariant symplectic potential for tetrad general relativity. JHEP 07, 040 (2018). arXiv:1804.09685

    MathSciNet  MATH  Google Scholar 

  2. Parattu, K., Chakraborty, S., Majhi, B.R., Padmanabhan, T.: A boundary term for the gravitational action with null boundaries. Gen. Rel. Gravit. 48(7), 94 (2016). arXiv:1501.01053

    ADS  MathSciNet  MATH  Google Scholar 

  3. Lehner, L., Myers, R.C., Poisson, E., Sorkin, R.D.: Gravitational action with null boundaries. Phys. Rev. D 94(8), 084046 (2016). arXiv:1609.00207

    ADS  MathSciNet  Google Scholar 

  4. Hopfmuller, F., Freidel, L.: Gravity degrees of freedom on a null surface. Phys. Rev. D 95(10), 104006 (2017). arXiv:1611.03096

    ADS  MathSciNet  Google Scholar 

  5. Jubb, I., Samuel, J., Sorkin, R., Surya, S.: Boundary and corner terms in the action for general relativity. Class. Quant. Gravity 34(6), 065006 (2017). arXiv:1612.00149

    ADS  MathSciNet  MATH  Google Scholar 

  6. Wieland, W.: New boundary variables for classical and quantum gravity on a null surface. Class. Quant. Gravity 34(21), 215008 (2017). arXiv:1704.07391

    ADS  MathSciNet  MATH  Google Scholar 

  7. Ashtekar, A., Bombelli, L., Reula, O.: The covariant phase space of asymptotically flat gravitational fields. In: Francaviglia, M., Holm, D. (eds.) Analysis, Geometry and Mechanics: 200 Years After Lagrange. North-Holland, Amsterdam (1991)

    Google Scholar 

  8. Crnkovic, C., Witten, E.: Covariant description of canonical formalism in geometrical theories. In: Hawking, S., Israel, W. (eds.) Three Hundred Years of Gravitation. Princeton University Press, Princeton (1986)

    Google Scholar 

  9. Lee, J., Wald, R.M.: Local symmetries and constraints. J. Math. Phys. 31, 725–743 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Wald, R.M., Zoupas, A.: A general definition of ’conserved quantities’ in general relativity and other theories of gravity. Phys. Rev. D 61, 084027 (2000). arXiv:gr-qc/9911095

    ADS  MathSciNet  MATH  Google Scholar 

  11. Jacobson, T., Mohd, A.: Black hole entropy and Lorentz-diffeomorphism Noether charge. Phys. Rev. D 92, 124010 (2015). arXiv:1507.01054

    ADS  MathSciNet  Google Scholar 

  12. Prabhu, K.: The first law of black hole mechanics for fields with internal gauge freedom. Class. Quant. Gravity 34(3), 035011 (2017). arXiv:1511.00388

    ADS  MathSciNet  MATH  Google Scholar 

  13. Ashtekar, A., Engle, J., Sloan, D.: Asymptotics and Hamiltonians in a first order formalism. Class. Quant. Gravity 25, 095020 (2008). arXiv:0802.2527

    ADS  MathSciNet  MATH  Google Scholar 

  14. Anderson, I.M., Torre, C.G.: Asymptotic conservation laws in field theory. Phys. Rev. Lett. 77, 4109–4113 (1996). arXiv:hep-th/9608008

    ADS  MathSciNet  MATH  Google Scholar 

  15. Barnich, G., Brandt, F., Henneaux, M.: Local BRST cohomology in gauge theories. Phys. Rep. 338, 439–569 (2000). arXiv:hep-th/0002245

    ADS  MathSciNet  MATH  Google Scholar 

  16. Barnich, G., Brandt, F.: Covariant theory of asymptotic symmetries, conservation laws and central charges. Nucl. Phys. B 633, 3–82 (2002). arXiv:hep-th/0111246

    ADS  MathSciNet  MATH  Google Scholar 

  17. Barnich, G., Mao, P., Ruzziconi, R.: Conserved currents in the Cartan formulation of general relativity. In: About Various Kinds of Interactions: Workshop in Honour of Professor Philippe Spindel Mons, Belgium, June 4–5, 2015 (2016). arXiv:1611.01777

  18. Frodden, E., Hidalgo, D.: Surface charges for gravity and electromagnetism in the first order formalism. Class. Quant. Gravity 35(3), 035002 (2018). arXiv:1703.10120

    ADS  MathSciNet  MATH  Google Scholar 

  19. Dolan, B.P.: On the definition of mass in general relativity: Noether charges and conserved quantities in diffeomorphism invariant theories. arXiv:1804.10451

  20. Gomes, H., Riello, A.: A unified geometric framework for boundary charges and particle dressings. arXiv:1804.01919

  21. Bodendorfer, N., Thiemann, T., Thurn, A.: New variables for classical and quantum gravity in all dimensions V. Isolated horizon boundary degrees of freedom. Class. Quant. Gravity 31, 055002 (2014). arXiv:1304.2679

    ADS  MathSciNet  MATH  Google Scholar 

  22. Burnett, G.A., Wald, R.M.: A conserved current for perturbations of Einstein–Maxwell space-times. Proc. R. Soc. A Math. Phys. Eng. Sci. 430, 57–67 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Gourgoulhon, E., Jaramillo, J.L.: A 3+1 perspective on null hypersurfaces and isolated horizons. Phys. Rep. 423, 159–294 (2006). arXiv:gr-qc/0503113

    ADS  MathSciNet  Google Scholar 

  24. Reisenberger, M.P.: The Poisson bracket on free null initial data for gravity. Phys. Rev. Lett. 101, 211101 (2008). arXiv:0712.2541

    ADS  MathSciNet  Google Scholar 

  25. Reisenberger, M.P.: The Poisson brackets of free null initial data for vacuum general relativity. Class. Quant. Gravity 35(18), 185012 (2018). arXiv:1804.10284

    ADS  MathSciNet  MATH  Google Scholar 

  26. d’Inverno, R.A., Smallwood, J.: Covariant 2+2 formulation of the initial-value problem in general relativity. Phys. Rev. D 22, 1233–1247 (1980)

    ADS  MathSciNet  Google Scholar 

  27. Torre, C.G.: Null Surface Geometrodynamics. Class. Quant. Gravity 3, 773 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Goldberg, J.N., Robinson, D.C., Soteriou, C.: Null hypersurfaces and new variables. Class. Quant. Gravity 9, 1309–1328 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Alexandrov, S., Speziale, S.: First order gravity on the light front. Phys. Rev. D 91(6), 064043 (2015). arXiv:1412.6057

    ADS  MathSciNet  Google Scholar 

  30. Bondi, H., van der Burg, M.G.J., Metzner, A.W.K.: Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems. Proc. R. Soc. Lond. A 269, 21–52 (1962)

    ADS  MATH  Google Scholar 

  31. Ashtekar, A., Beetle, C., Dreyer, O., Fairhurst, S., Krishnan, B., Lewandowski, J., Wisniewski, J.: Isolated horizons and their applications. Phys. Rev. Lett. 85, 3564–3567 (2000). arXiv:gr-qc/0006006

    ADS  MathSciNet  MATH  Google Scholar 

  32. Ashtekar, A., Krishnan, B.: Isolated and dynamical horizons and their applications. Living Rev. Relativ. 7, 10 (2004). arXiv:gr-qc/0407042

    ADS  MATH  Google Scholar 

  33. Engle, J., Noui, K., Perez, A., Pranzetti, D.: Black hole entropy from an SU(2)-invariant formulation of Type I isolated horizons. Phys. Rev. D 82, 044050 (2010). arXiv:1006.0634

    ADS  Google Scholar 

  34. Sachs, R.: On the characteristic initial value problem in gravitational theory. J. Math. Phys. 3, 908–914 (1962)

    ADS  MathSciNet  MATH  Google Scholar 

  35. De Paoli, E., Speziale, S.: Sachs’ free data in real connection variables. JHEP 11, 205 (2017). arXiv:1707.00667

    ADS  MathSciNet  MATH  Google Scholar 

  36. Ashtekar, A., Streubel, M.: Symplectic geometry of radiative modes and conserved quantities at null infinity. Proc. R. Soc. Lond. A 376, 585–607 (1981)

    ADS  MathSciNet  Google Scholar 

  37. Ashtekar, A., Campiglia, M., Laddha, A.: Null infinity, the BMS group and infrared issues. Gen. Relativ. Gravity 50(11), 140–163 (2018). arXiv:1808.07093

    ADS  MathSciNet  MATH  Google Scholar 

  38. Herfray, Y.: Asymptotic shear and the intrinsic geometry of null-infinity. arXiv:2001.01281

  39. Ashtekar, A.: Radiative degrees of freedom of the gravitational field in exact general relativity. J. Math. Phys. 22, 2885–2895 (1981)

    ADS  MathSciNet  Google Scholar 

  40. Sorkin, R.: Time evolution problem in Regge calculus. Phys. Rev. D 12, 385–396 (1975)

    ADS  MathSciNet  Google Scholar 

  41. Hartle, J.B., Sorkin, R.: Boundary terms in the action for the Regge calculus. Gen. Relativ. Grav. 13, 541–549 (1981)

    ADS  MathSciNet  Google Scholar 

  42. Hayward, G.: Gravitational action for space-times with nonsmooth boundaries. Phys. Rev. D 47, 3275–3280 (1993)

    ADS  MathSciNet  Google Scholar 

  43. Hawking, S.W., Hunter, C.J.: The gravitational Hamiltonian in the presence of nonorthogonal boundaries. Class. Quant. Gravity 13, 2735–2752 (1996). arXiv:gr-qc/9603050

    ADS  MATH  Google Scholar 

  44. Anderson, M.T.: On quasi-local Hamiltonians in general relativity. Phys. Rev. D 82, 084044 (2010). arXiv:1008.4309

    ADS  Google Scholar 

  45. Witten, E.: A note on boundary conditions in Euclidean gravity. arXiv:1805.11559

  46. Wieland, W.: Conformal boundary conditions, loop gravity and the continuum. JHEP 10, 089 (2018). arXiv:1804.08643

    ADS  MathSciNet  MATH  Google Scholar 

  47. Speziale, S.: Raychaudhuri and optical equations for null geodesic congruences with torsion. Phys. Rev. D 98(8), 084029 (2018). arXiv:1808.00952

    ADS  MathSciNet  Google Scholar 

  48. Arnowitt, R.L., Deser, S., Misner, C.W.: The dynamics of general relativity. Gen. Relativ. Grav. 40, 1997–2027 (2008). arXiv:gr-qc/0405109

    ADS  MATH  Google Scholar 

  49. Regge, T., Teitelboim, C.: Role of surface integrals in the hamiltonian formulation of general relativity. Ann. Phys. 88, 286 (1974)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Ashtekar, A., Hansen, R.O.: A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity. J. Math. Phys. 19, 1542–1566 (1978)

    ADS  MathSciNet  Google Scholar 

  51. Beig, R., Murchadha, N.O.: The momentum constraints of general relativity and spatial conformal isometries. Commun. Math. Phys. 176, 723–738 (1996). arXiv:gr-qc/9412029

    ADS  MathSciNet  MATH  Google Scholar 

  52. Iyer, V., Wald, R.M.: Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 50, 846–864 (1994). arXiv:gr-qc/9403028

    ADS  MathSciNet  Google Scholar 

  53. Compère, G., Fiorucci, A., Ruzziconi, R.: Superboost transitions, refraction memory and super-Lorentz charge algebra. JHEP 11, 200 (2018). arXiv:1810.00377

    ADS  MathSciNet  MATH  Google Scholar 

  54. Donnelly, W., Freidel, L.: Local subsystems in gauge theory and gravity. JHEP 09, 102 (2016). arXiv:1601.04744

    ADS  MathSciNet  MATH  Google Scholar 

  55. Geiller, M.: Lorentz-diffeomorphism edge modes in 3d gravity. JHEP 02, 029 (2018). arXiv:1712.05269

    ADS  MathSciNet  MATH  Google Scholar 

  56. Wieland, W.: Generating functional for gravitational null initial data. Class. Quant. Gravity 36(23), 235007 (2019). arXiv:1905.06357

    ADS  MathSciNet  Google Scholar 

  57. Ashtekar, A., Beetle, C., Fairhurst, S.: Mechanics of isolated horizons. Class. Quant. Gravity 17, 253–298 (2000). arXiv:gr-qc/9907068

    ADS  MathSciNet  MATH  Google Scholar 

  58. Corichi, A., Rubalcava, I., Vukasinac, T.: Hamiltonian and Noether charges in first order gravity. Gen. Relativ. Grav. 46, 1813 (2014). arXiv:1312.7828

    ADS  MathSciNet  MATH  Google Scholar 

  59. Corichi, A., Rubalcava-García, I., Vukašinac, T.: Actions, topological terms and boundaries in first-order gravity: a review. Int. J. Mod. Phys. D 25(04), 1630011 (2016). arXiv:1604.07764

    ADS  MathSciNet  MATH  Google Scholar 

  60. Aneesh, P., Chakraborty, S., Hoque, S.J., Virmani, A.: First law of black hole mechanics with fermions. arXiv:2004.10215

  61. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  62. Freidel, L., Perez, A.: Quantum gravity at the corner. Universe 4(10), 107 (2018). arXiv:1507.02573

    ADS  Google Scholar 

  63. Freidel, L., Perez, A., Pranzetti, D.: Loop gravity string. Phys. Rev. D 95(10), 106002 (2017). arXiv:1611.03668

    ADS  MathSciNet  Google Scholar 

  64. Freidel, L., Livine, E.R., Pranzetti, D.: Gravitational edge modes: from Kac-Moody charges to Poincaré networks. Class. Quant. Gravity 36(19), 195014 (2019). arXiv:1906.07876

    ADS  Google Scholar 

  65. Cattaneo, A.S., Perez, A.: A note on the Poisson bracket of 2d smeared fluxes in loop quantum gravity. Class. Quant. Gravity 34(10), 107001 (2017). arXiv:1611.08394

    ADS  MathSciNet  MATH  Google Scholar 

  66. Hehl, F.W., Von Der Heyde, P., Kerlick, G.D., Nester, J.M.: General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48, 393–416 (1976)

    ADS  MathSciNet  MATH  Google Scholar 

  67. De Lorenzo, T., De Paoli, E., Speziale, S.: Spacetime thermodynamics with contorsion. Phys. Rev. D 98(6), 064053 (2018). arXiv:1807.02041

    ADS  MathSciNet  Google Scholar 

  68. Chakraborty, S., Dey, R.: Noether current, black hole entropy and spacetime torsion. arXiv:1806.05840

  69. Godazgar, H., Godazgar, M., Perry, M.J.: Asymptotic gravitational charges. arXiv:2007.01257

  70. Godazgar, H., Godazgar, M., Perry, M.J.: Hamiltonian derivation of dual gravitational charges. arXiv:2007.07144

  71. Gallegos, A., Gursoy, U.: Holographic spin liquids and Lovelock Chern-Simons gravity. arXiv:2004.05148

  72. Compère, G., Fiorucci, A.: Advanced Lectures on General Relativity, Lect. Notes Phys., vol. 952 (2019). arXiv:1801.07064

  73. Compère, G., Murata, K., Nishioka, T.: Central charges in extreme black hole/CFT correspondence. JHEP 05, 077 (2009). arXiv:0902.1001

    ADS  MathSciNet  Google Scholar 

  74. Hehl, F.W., McCrea, J.D.: Bianchi identities and the automatic conservation of energy momentum and angular momentum in general relativistic field theories. Found. Phys. 16, 267–293 (1986)

    ADS  MathSciNet  Google Scholar 

  75. Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Metric affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 258, 1–171 (1995). arXiv:gr-qc/9402012

    ADS  MathSciNet  Google Scholar 

  76. Bonder, Y., Corral, C.: Unimodular Einstein-Cartan gravity: dynamics and conservation laws. Phys. Rev. D 97(8), 084001 (2018). arXiv:1802.04795

    ADS  MathSciNet  Google Scholar 

  77. Canepa, G., Cattaneo, A.S., Schiavina, M.: Boundary structure of General Relativity in tetrad variables. arXiv:2001.11004

  78. Wieland, W.: Fock representation of gravitational boundary modes and the discreteness of the area spectrum. Annales Henri Poincare 18(11), 3695–3717 (2017). arXiv:1706.00479

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Si.S. is grateful to Abhay Ashtekar, Wolfgang Wieland and Marc Geiller for many precious discussions on surface charges. R.O. thanks Geoffrey Compère and Ali Seraj for interesting discussions on covariant phase space methods, and Ernesto Frodden and Diego Hidalgo for discussions on the first-order gravity. R.O. also thanks the CPT for funding his visit in November 2018 and for the hospitality during his stay in March 2019, supported by the COST Action GWverse CA16104 under the Short Term Scientific Missions programme. R.O. is funded by the European Structural and Investment Funds (ESIF) and the Czech Ministry of Education, Youth and Sports (MSMT) (Project CoGraDS - CZ.02.1.01/0.0/0.0/15003/0000437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Speziale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Conventions

We denote by \( \underset{\widetilde{}}{\epsilon }{} _{\mu \nu \rho \sigma }\) the completely antisymmetric spacetime density with \( \underset{\widetilde{}}{\epsilon }{} _{0123}=1\), and \(\tilde{\epsilon }^{\mu \nu \rho \sigma } \underset{\widetilde{}}{\epsilon }{} _{\mu \nu \rho \sigma }=-4!\). It is related to the volume 4-form by

$$\begin{aligned} \epsilon :=\frac{1}{4!}\epsilon _{\mu \nu \rho \sigma }~dx^\mu \wedge dx^\nu \wedge dx^\rho \wedge dx^\sigma , \qquad \epsilon _{\mu \nu \rho \sigma }:=\sqrt{-g} \, \underset{\widetilde{}}{\epsilon }{} _{\mu \nu \rho \sigma }. \end{aligned}$$
(A.1)

For the internal Levi-Civita \(\epsilon _{IJKL}\) the density notation is unnecessary, and we use the same convention, \({\epsilon }_{0123}=1\). Hence the tetrad determinant is

$$\begin{aligned} e = -\frac{1}{4!}\epsilon _{IJKL}~\tilde{\epsilon }^{\mu \nu \rho \sigma } ~e_\mu ^I e_\nu ^J e_\rho ^K e_\sigma ^L. \end{aligned}$$
(A.2)

Accordingly,

$$\begin{aligned} 4e^{[\mu }_Ie^{\nu ]}_J&= - \epsilon _{IJKL}\epsilon ^{\mu \nu \rho \sigma } e_\rho ^Ke_\sigma ^L, \end{aligned}$$
(A.3a)
$$\begin{aligned} 6e^{[\mu }_Ie^{\nu }_Je^{\rho ]}_K&= - \epsilon _{IJKL}\epsilon ^{\mu \nu \rho \sigma } e_\sigma ^L, \end{aligned}$$
(A.3b)

which are used in the main text.

For the Hodge dual operator, \(\star : \Lambda ^p\mapsto \Lambda ^{n-p}\) satisfies

$$\begin{aligned} \star ^2 \omega ^{(p)}= -(-1)^{p(n-p)}\omega ^{(p)}, \qquad \omega ^{(p)}\wedge \star \theta ^{(q)} = \omega ^{(p)}\lrcorner \theta _{(q)} \sqrt{-g} d^nx. \end{aligned}$$
(A.4)

In components,

$$\begin{aligned} (\star \omega ^{(p)})^{\mu _1..\mu _{n-p}}&:= \frac{1}{ p!} \omega ^{(p)}_{\alpha _1..\alpha _p} \epsilon ^{\alpha _1..\alpha _p\mu _{1}..\mu _{n-p}}, \end{aligned}$$
(A.5a)
$$\begin{aligned} \omega ^{(p)}_{\alpha _1..\alpha _p}&:=- \frac{1}{(n-p)!}\epsilon _{\alpha _1..\alpha _p\mu _1..\mu _{n-p}} (\star \omega ^{(p)})^{\mu _1..\mu _{n-p}}, \end{aligned}$$
(A.5b)
$$\begin{aligned} (\star \omega ^{(p)})_{\mu _1..\mu _{n-p}}&:= \frac{1}{p!} \omega ^{(p)}{}^{\alpha _1..\alpha _p} \epsilon _{\alpha _1..\alpha _p\mu _{1}..\mu _{n-p}}, \end{aligned}$$
(A.5c)
$$\begin{aligned} \omega ^{\alpha _1..\alpha _{p}}&:= - \frac{1}{(n-p)!} \epsilon ^{\alpha _1..\alpha _p\mu _{1}..\mu _{n-p}} (\star \omega ^{(p)})_{\mu _1..\mu _{n-p}}. \end{aligned}$$
(A.5d)

Appendix B: Dressing 2-form

To make some manipulations with the dressing 2-form of [1] more manifest, we report here some useful explicit formulas. First, we have

$$\begin{aligned} \star (e_I\wedge \delta e^I)&= -\frac{1}{2}\epsilon _{IJKL}~ e^I\wedge e^J\, (e^{K\alpha }\delta e_{\alpha }^L) = \epsilon _{\mu \nu }^{\;\;\;\;\rho \sigma }e_{I\rho }\delta e_{\sigma }^I \, dx^\mu \wedge dx^\nu , \end{aligned}$$
(B.1a)
$$\begin{aligned} e_I\wedge \delta e^I&= -\eta _{IJKL} ~e^I\wedge e^J\, (e^{K\alpha }\delta e_{\alpha }^L) = e_{I[\mu }\delta e_{\nu ]}^I \, dx^\mu \wedge dx^\nu . \end{aligned}$$
(B.1b)

Second, the explicit expression of the Hodge dual of the exact 3-form \(d\alpha (\delta )\) is, in the general case including the Barbero-Immirzi term,

$$\begin{aligned} (\star d\alpha )^\mu&= \frac{1}{3!} (d\alpha )_{\nu \alpha \beta } \epsilon ^{\nu \alpha \beta \mu } = \frac{1}{2} \partial _\nu \alpha _{\alpha \beta } \epsilon ^{\nu \alpha \beta \mu } = \frac{1}{2}\partial _\nu \left( \epsilon _{\alpha \beta }^{\;\;\;\;\rho \sigma }e_{I\rho }\delta e_{\sigma }^I +\frac{2}{\gamma }e_{I[\alpha }\delta e_{\beta ]}^I\right) \epsilon ^{\nu \alpha \beta \mu } \nonumber \\&= \frac{1}{2}\partial _\nu \left( e e_{I\rho }\delta e_{\sigma }^I - \frac{1}{2\gamma } e_{I\gamma }\delta e_{\delta }^I \tilde{\epsilon }^{\;\;\;\;\gamma \delta }_{\rho \sigma }\right) \tilde{\epsilon }_{\alpha \beta }^{\;\;\;\;\rho \sigma }\epsilon ^{\nu \alpha \beta \mu }\nonumber \\&= -2\partial _\nu \left( e e^{I[\nu } \delta e^{\mu ]I} + \frac{1}{2\gamma } \tilde{\epsilon }^{\mu \nu \gamma \delta } e_{I\gamma }\delta e_{\delta }^I \right) , \end{aligned}$$
(B.2)

where in the final step we used

$$\begin{aligned} e^\nu _I g^{\mu \sigma }\delta e_{\sigma }^I = - e^\mu _I \delta e^{I\nu }. \end{aligned}$$
(B.3)

Finally when torsion is present, we have the following additional relations

$$\begin{aligned}&\partial _\sigma (2e e^{[\sigma }_I \delta e^{\mu ]I}) = \nabla _{\sigma }\left( 2e^{[\sigma }_I \delta e^{\mu ]I}\right) - T^\mu {}_{\nu \rho }e^\nu _I\delta e^{I\rho }, \end{aligned}$$
(B.4a)
$$\begin{aligned}&\partial _\sigma (\tilde{\epsilon }^{\mu \nu \rho \sigma }e_{I\nu }\delta e^I_\rho ) = \epsilon ^{\mu \nu \rho \sigma } \Big [\nabla _\sigma (e_{I\nu }\delta e^I_\rho ) - \frac{1}{2} T^\lambda {}_{\sigma \nu }(\delta e_{I\lambda }e^I_\rho - e_{I\lambda }\delta e_\rho ^I) \Big ], \end{aligned}$$
(B.4b)

in agreement with (8.3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveri, R., Speziale, S. Boundary effects in General Relativity with tetrad variables. Gen Relativ Gravit 52, 83 (2020). https://doi.org/10.1007/s10714-020-02733-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02733-8

Keywords

Navigation