Skip to main content
Log in

Spectral emittance measurements of micro/nanostructures in energy conversion: a review

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Micro/nanostructures play a key role in tuning the radiative properties of materials and have been applied to high-temperature energy conversion systems for improved performance. Among the various radiative properties, spectral emittance is of integral importance for the design and analysis of materials that function as radiative absorbers or emitters. This paper presents an overview of the spectral emittance measurement techniques using both the direct and indirect methods. Besides, several micro/nanostructures are also introduced, and a special emphasis is placed on the emissometers developed for characterizing engineered micro/nanostructures in high-temperature applications (e.g., solar energy conversion and thermophotovoltaic devices). In addition, both experimental facilities and measured results for different materials are summarized. Furthermore, future prospects in developing instrumentation and micro/nanostructured surfaces for practical applications are also outlined. This paper provides a comprehensive source of information for the application of micro/nanostructures in high-temperature energy conversion engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

C f :

Solar concentration factor

C 1 :

First radiation constant

C 2 :

Second radiation constant

E :

Emissive power/(W · m−2)

E λ :

Spectral emissive power/(W · m−2 · µm−1)

G 0 :

Total solar irradiance/(W · m−2)

G λ :

Spectral solar irradiance/(W · m−2 · µm−1)

I :

Radiation intensity/(W · m−2 · sr−1)

I λ :

Spectral intensity/(W · m−2 · sr−1 · µm−1)

T :

Temperature/K

α :

Absorptance

ε :

Emittance

η :

Efficiency

θ :

Zenith angle/(°)

Λ:

Period of nanostructure/µm

λ :

Wavelength/µm

ρ :

Reflectance

σ :

Stefen-Boltzmann constant

ψ :

Azimuthal angle

a:

Absorber

b:

Blackbody

θ :

Directional

λ :

Spectral

CSP:

Concentrating solar power

EQE:

External quantum efficiency

FTIR:

Fourier-transform infrared (spectrometer)

PhC:

Photonic crystal

PV:

Photovoltaic

TPV:

Thermophotovoltaic(s)

References

  1. Weinstein L A, Loomis J, Bhatia B, Bierman D M, Wang E N, Chen G. Concentrating solar power. Chemical Reviews, 2015, 115 (23): 12797–12838

    Google Scholar 

  2. Behar O. Solar thermal power plants—a review of configurations and performance comparison. Renewable & Sustainable Energy Reviews, 2018, 92: 608–627

    Google Scholar 

  3. Daneshvar H, Prinja R, Kherani N P. Thermophotovoltaics: fundamentals, challenges and prospects. Applied Energy, 2015, 159: 560–575

    Google Scholar 

  4. Basu S, Chen Y B, Zhang Z M. Microscale radiation in thermophotovoltaic devices—a review. International Journal of Energy Research, 2007, 31(6–7): 689–716

    Google Scholar 

  5. Ferrari C, Melino F, Pinelli M, Spina P R. Thermophotovoltaic energy conversion: analytical aspects, prototypes and experiences. Applied Energy, 2014, 113: 1717–1730

    Google Scholar 

  6. Turchi C S, Ma Z, Neises T W, Wagner M J. Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems. Journal of Solar Energy Engineering, 2013, 135(4): 041007

    Google Scholar 

  7. Romero M, Steinfeld A. Concentrating solar thermal power and thermochemical fuels. Energy & Environmental Science, 2012, 5 (11): 9234–9245

    Google Scholar 

  8. Bermel P, Lee J, Joannopoulos J D, Celanovic I, Soljacie M. Selective solar absorbers. Annual Review of Heat Transfer, 2012, 15(15): 231–254

    Google Scholar 

  9. Zhou Z, Sakr E, Sun Y, Bermel P. Solar thermophotovoltaics: reshaping the solar spectrum. Nanophotonics, 2016, 5(1): 1–21

    Google Scholar 

  10. Pfiester N A, Vandervelde T E. Selective emitters for thermophotovoltaic applications. Physica Status Solidi (A), Applications and Materials Science, 2017, 214(1): 1600410

    Google Scholar 

  11. Lenert A, Bierman D M, Nam Y, Chan W R, Celanović I, Soljačić M, Wang E N. A nanophotonic solar thermophotovoltaic device. Nature Nanotechnology, 2014, 9(2): 126–130

    Google Scholar 

  12. Nam Y, Yeng Y X, Lenert A, Bermel P, Celanovic I, Soljačić M, Wang E N. Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters. Solar Energy Materials and Solar Cells, 2014, 122: 287–296

    Google Scholar 

  13. Shimizu M, Kohiyama A, Yugami H. High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter. Journal of Photonics for Energy, 2015, 5 (1): 053099

    Google Scholar 

  14. Rephaeli E, Fan S. Absorber and emitter for solar thermophotovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Optics Express, 2009, 17(17): 15145–15159

    Google Scholar 

  15. Khodasevych I E, Wang L, Mitchell A, Rosengarten G. Micro- and nanostructured surfaces for selective solar absorption. Advanced Optical Materials, 2015, 3(7): 852–881

    Google Scholar 

  16. Zhang Z M. Nano/microscale Heat Transfer. 2nd ed. Springer Nature Switzerland AG, 2020

  17. Rinnerbauer V, Ndao S, Yeng Y X, Chan W R, Senkevich J J, Joannopoulos J D, Soljačić M, Celanovic I. Recent developments in high-temperature photonic crystals for energy conversion. Energy & Environmental Science, 2012, 5(10): 8815–8823

    Google Scholar 

  18. Zhang Z M, Wang L P. Measurements and modeling of the spectral and directional radiative properties of micro/nanostructured materials. International Journal of Thermophysics, 2013, 34(12): 2209–2242

    Google Scholar 

  19. Honner M, Honnerova P. Survey of emissivity measurement by radiometric methods. Applied Optics, 2015, 54(4): 669–683

    Google Scholar 

  20. Wang L P, Basu S, Zhang Z M. Direct and indirect methods for calculating thermal emission from layered structures with nonuniform temperatures. Journal of Heat Transfer, 2011, 133(7): 072701

    Google Scholar 

  21. Jones J M, Mason P E, Williams A. A compilation of data on the radiant emissivity of some materials at high temperatures. Journal of the Energy Institute, 2019, 92(3): 523–534

    Google Scholar 

  22. Monte C, Hollandt J. The measurement of directional spectral emissivity in the temperature range from 80°C to 500°C at the Physikalisch-Technische Bundesanstalt. High Temperatures. High Pressures, 2010, 39(2): 151–164

    Google Scholar 

  23. Monte C, Gutschwager B, Morozova S P, Hollandt J. Radiation thermometry and emissivity measurements under vacuum at the PTB. International Journal of Thermophysics, 2009, 30(1): 203–219

    Google Scholar 

  24. Cagran C P, Hanssen L M, Noorma M, Gura A V, Mekhontsev S N. Temperature-resolved infrared spectral emissivity of SiC and Pt-10Rh for temperatures up to 900°C. International Journal of Thermophysics, 2007, 28(2): 581–597

    Google Scholar 

  25. Wang L P, Basu S, Zhang Z M. Direct measurement of thermal emission from a Fabry-Perot cavity resonator. Journal of Heat Transfer, 2012, 134(7): 072701

    Google Scholar 

  26. Mercatelli L, Meucci M, Sani E. Facility for assessing spectral normal emittance of solid materials at high temperature. Applied Optics, 2015, 54(29): 8700–8705

    Google Scholar 

  27. del Campo L, Pérez-Sáez R B, Esquisabel X, Fernández I, Tello M J. New experimental device for infrared spectral directional emissivity measurements in a controlled environment. Review of Scientific Instruments, 2006, 77(11): 113111

    Google Scholar 

  28. Hanssen L M, Cagran C P, Prokhorov A V, Mekhontsev S N, Khromchenko V B. Use of a high-temperature integrating sphere reflectometer for surface-temperature measurements. International Journal of Thermophysics, 2007, 28(2): 566–580

    Google Scholar 

  29. Zhang Y F, Dai J M, Wang Z W, Pan W D, Zhang L. A spectral emissivity measurement facility for solar absorbing coatings. International Journal of Thermophysics, 2013, 34(5): 916–925

    Google Scholar 

  30. Fu C J, Zhang Z M. Thermal radiative properties of metamaterials and other nanostructured materials: a review. Frontiers of Energy and Power Engineering in China, 2009, 3(1): 11–26

    Google Scholar 

  31. Zhang Z M, Ye H. Measurements of radiative properties of engineered micro-/nanostructures. Annual Review of Heat Transfer, 2013, 16(1): 345–396

    Google Scholar 

  32. Dan A, Barshilia H C, Chattopadhyay K, Basu B. Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: a critical review. Renewable & Sustainable Energy Reviews, 2017, 79: 1050–1077

    Google Scholar 

  33. Modest M F. Radiative Heat Transfer. 3rd ed. New York: Academic Press, 2013

    Google Scholar 

  34. Zhang Z M, Tsai B K, Machin G. Radiometric Temperature Measurements: I. Fundamentals; II. Applications. New York: Academic Press, 2009

    Google Scholar 

  35. Howell J R, Menguc M P, Siegel R. Thermal Radiation Heat Transfer. 6th ed. New York: CRC Press, 2015

    Google Scholar 

  36. Worthing A. Temperature radiation emissivities and emittances. Journal of Applied Physics, 1940, 11(6): 421–437

    Google Scholar 

  37. Ramanathan K, Yen S. High-temperature emissivities of copper, aluminum, and silver. Journal of the Optical Society of America, 1977, 67(1): 32–38

    Google Scholar 

  38. Masuda H, Higano M. Measurement of total hemispherical emissivities of metal wires by using transient calorimetric technique. Journal of Heat Transfer, 1988, 110(1): 166–172

    Google Scholar 

  39. Zhang F, Yu K, Zhang K, Liu Y, Xu K, Liu Y. An emissivity measurement apparatus for near infrared spectrum. Infrared Physics & Technology, 2015, 73: 275–280

    Google Scholar 

  40. Yang P, Ye H, Zhang Z M. Experimental demonstration of the effect of magnetic polaritons on the radiative properties of deep aluminum gratings. Journal of Heat Transfer, 2019, 141(5): 052702

    Google Scholar 

  41. Lee H J, Bryson A C, Zhang Z M. Measurement and modeling of the emittance of silicon wafers with anisotropic roughness. International Journal of Thermophysics, 2007, 28(3): 918–933

    Google Scholar 

  42. Yang P, Chen C, Zhang Z M. A dual-layer structure with record-high solar reflectance for daytime radiative cooling. Solar Energy, 2018, 169: 316–324

    Google Scholar 

  43. Guo Y M, Pang S J, Luo Z J, Shuai Y, Tan H P, Qi H. Measurement of directional spectral emissivity at high temperatures. International Journal of Thermophysics, 2019, 40(1): 10

    Google Scholar 

  44. Ren D, Tan H, Xuan Y, Han Y, Li Q. Apparatus for measuring spectral emissivity of solid materials at elevated temperatures. International Journal of Thermophysics, 2016, 37(5): 51

    Google Scholar 

  45. Pérez-Sáez R B, Campo L, Tello M J. Analysis of the accuracy of methods for the direct measurement of emissivity. International Journal of Thermophysics, 2008, 29(3): 1141–1155

    Google Scholar 

  46. Honnerová P, Martan J, Honner M. Uncertainty determination in high-temperature spectral emissivity measurement method of coatings. Applied Thermal Engineering, 2017, 124: 261–270

    Google Scholar 

  47. Monte C, Hollandt J. The determination of the uncertainties of spectral emissivity measurements in air at the PTB. Metrologia, 2010, 47(2): S172–S181

    Google Scholar 

  48. Adibekyan A, Monte C, Kehrt M, Gutschwager B, Hollandt J. Emissivity measurement under vacuum from 4 µm to 100 µm and from −40°C to 450°C at PTB. International Journal of Thermophysics, 2015, 36(2–3): 283–289

    Google Scholar 

  49. Burleigh D D, Hanssen L M, Cramer K E, Mekhontsev S N, Khromchenko V B, Peacock G R. Infrared spectral emissivity characterization facility at NIST. In: Proceedings of SPIE—The International Society for Optical Engineering (Thermosense 26), Orlando, FL, USA, 2004, 5404: 1–12

  50. Wang L P, Zhang Z M. Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures. Journal of Heat Transfer, 2013, 135(9): 091505

    Google Scholar 

  51. Yuan Z, Zhang J, Zhao J, Liang Y, Duan Y. Linearity study of a spectral emissivity measurement facility. International Journal of Thermophysics, 2009, 30(1): 227–235

    Google Scholar 

  52. Balat-Pichelin M, Sans J L, Escape C, Combes H. Emissivity of Elgiloy and pure niobium at high temperature for the Solar Orbiter mission. Vacuum, 2017, 142: 87–95

    Google Scholar 

  53. Ma J, Zhang Y, Wu L, Li H, Song L. An apparatus for spectral emissivity measurements of thermal control materials at low temperatures. Materials (Basel), 2019, 12(7): 1141

    Google Scholar 

  54. Honnerová P, Martan J, Kučera M, Honner M, Hameury J. New experimental device for high-temperature normal spectral emissivity measurements of coatings. Measurement Science & Technology, 2014, 25(9): 095501

    Google Scholar 

  55. Honner M, Honnerová P, Kučera M, Martan J. Laser scanning heating method for high-temperature spectral emissivity analyses. Applied Thermal Engineering, 2016, 94: 76–81

    Google Scholar 

  56. Donaldson Hanna K L, Greenhagen B T, Patterson W R III, Pieters C M, Mustard J F, Bowles N E, Paige D A, Glotch T D, Thompson C. Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: application to Diviner thermal infrared observations of the Moon. Icarus, 2017, 283: 326–342

    Google Scholar 

  57. Cao G, Weber S J, Martin S O, Malaney T L, Slattery S R, Anderson M H, Sridharan K, Allen T R. In situ measurements of spectral emissivity of materials for very high temperature reactors. Nuclear Technology, 2011, 175(2): 460–467

    Google Scholar 

  58. Gorewoda J, Scherer V. Influence of carbonate decomposition on normal spectral radiative emittance in the context of oxyfuel combustion. Energy & Fuels, 2016, 30(11): 9752–9760

    Google Scholar 

  59. Gorewoda J, Scherer V. Normal radiative emittance of coal ash sulfates in the context of oxyfuel combustion. Energy & Fuels, 2017, 31(4): 4400–4406

    Google Scholar 

  60. Hesketh P J, Zemel J N, Gebhart B. Organ pipe radiant modes of periodic micromachined silicon surfaces. Nature, 1986, 324(6097): 549–551

    Google Scholar 

  61. Hesketh P, Gebhart B, Zemel J. Measurements of the spectral and directional emission from microgrooved silicon surfaces. Journal of Heat Transfer, 1988, 110(3): 680–686

    Google Scholar 

  62. Kusunoki F, Kohama T, Hiroshima T, Fukumoto S, Takahara J, Kobayashi T. Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavities. Japanese Journal of Applied Physics, 2004, 43(8A): 5253–5258

    Google Scholar 

  63. Sai H, Yugami H, Akiyama Y, Kanamori Y, Hane K. Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2001, 18(7): 1471–1476

    Google Scholar 

  64. Sai H, Yugami H, Nakamura K, Nakagawa N, Ohtsubo H, Maruyama S. Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity. Japanese Journal of Applied Physics, 2000, 39(Part 1, No. 4A): 1957–1961

    Google Scholar 

  65. Kirikae D, Suzuki Y, Kasagi N. A silicon microcavity selective emitter with smooth surfaces for thermophotovoltaic power generation. Journal of Micromechanics and Microengineering, 2010, 20(10): 104006

    Google Scholar 

  66. Hanamura K, Kameya Y. Spectral control of thermal radiation using rectangular micro-cavities on emitter-surface for thermophotovoltaic generation of electricity. Journal of Thermal Science and Technology, 2008, 3(1): 33–44

    Google Scholar 

  67. Markham J R, Solomon P R, Best P E. An FT-IR based instrument for measuring spectral emittance of material at high temperature. Review of Scientific Instruments, 1990, 61(12): 3700–3708

    Google Scholar 

  68. Ishii J, Ono A. Fourier transform spectrometer for thermal-infrared emissivity measurements near room temperatures. In: Proceedings of SPIE—The International Society for Optical Engineering (Optical Diagnostic Methods for Inorganic Materials II), San Diego, USA, 2000, 4103:126–132

  69. Nakazawa K, Ohnishi A. Simultaneous measurement method of normal spectral emissivity and optical constants of solids at high temperature in vacuum. International Journal of Thermophysics, 2010, 31(10): 2010–2018

    Google Scholar 

  70. Lee G W, Jeon S, Yoo N J, Park C W, Park S N, Kwon S Y, Lee S H. Normal and directional spectral emittance measurement of semi-transparent materials using two-substrate method: alumina. International Journal of Thermophysics, 2011, 32(6): 1234–1246

    Google Scholar 

  71. Hatzl S, Kirschner M, Lippig V, Sander T, Mundt C, Pfitzner M. Direct measurements of infrared normal spectral emissivity of solid materials for high-temperature applications. International Journal of Thermophysics, 2013, 34(11): 2089–2101

    Google Scholar 

  72. Bauer W, Moldenhauer A, Oertel H. Thermal radiation properties of different metals. In: Proceedings of SPIE—The International Society for Optical Engineering (Thermosense 28), Kissimmee, FL, USA, 2006, 6205: 62050E

  73. Fu T, Duan M, Tang J, Shi C. Measurements of the directional spectral emissivity based on a radiation heating source with alternating spectral distributions. International Journal of Heat and Mass Transfer, 2015, 90: 1207–1213

    Google Scholar 

  74. Hernandez D, Antoine D, Olalde G, Gineste J M. Optical fiber reflectometer coupled with a solar concentrator to determine solar reflectivity and absorptivity at high temperature. Journal of Solar Energy Engineering, 1999, 121(1): 31–35

    Google Scholar 

  75. Boubault A, Claudet B, Faugeroux O, Olalde G. Accelerated aging of a solar absorber material subjected to highly concentrated solar flux. Energy Procedia, 2014, 49: 1673–1681

    Google Scholar 

  76. Soum-Glaude A, Le Gal A, Bichotte M, Escape C, Dubost L. Optical characterization of TiAlNx/TiAlNy/Al2O3 tandem solar selective absorber coatings. Solar Energy Materials and Solar Cells, 2017, 170: 254–262

    Google Scholar 

  77. Wang H, Prasad Sivan V, Mitchell A, Rosengarten G, Phelan P, Wang L. Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Solar Energy Materials and Solar Cells, 2015, 137: 235–242

    Google Scholar 

  78. Yang Y, Taylor S, Alshehri H, Wang L. Wavelength-selective and diffuse infrared thermal emission mediated by magnetic polaritons from silicon carbide metasurfaces. Applied Physics Letters, 2017, 111(5): 051904

    Google Scholar 

  79. Li X F, Chen Y R, Miao J, Zhou P, Zheng Y X, Chen L Y, Lee Y P. High solar absorption of a multilayered thin film structure. Optics Express, 2007, 15(4): 1907–1912

    Google Scholar 

  80. Greffet J J, Carminati R, Joulain K, Mulet J P, Mainguy S, Chen Y. Coherent emission of light by thermal sources. Nature, 2002, 416 (6876): 61–64

    Google Scholar 

  81. Sai H, Kanamori Y, Yugami H. Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures. Journal of Micromechanics and Microengineering, 2005, 15(9): S243–S249

    Google Scholar 

  82. Wang L P, Zhang Z M. Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics. Applied Physics Letters, 2012, 100(6): 063902

    Google Scholar 

  83. Zhao B, Zhang Z M. Study of magnetic polaritons in deep gratings for thermal emission control. Journal of Quantitative Spectroscopy & Radiative Transfer, 2014, 135: 81–89

    Google Scholar 

  84. Lee B J, Wang L P, Zhang Z M. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Optics Express, 2008, 16(15): 11328–11336

    Google Scholar 

  85. Sakurai A, Zhao B, Zhang Z M. Prediction of the resonance condition of metamaterial emitters and absorbers using LC circuit model. In: Proceedings of the 15th International Heat Transfer Conference IHTC15-9012, Begel House Inc., 2014

  86. Zhao B, Wang L P, Shuai Y, Zhang Z M. Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure. International Journal of Heat and Mass Transfer, 2013, 67: 637–645

    Google Scholar 

  87. Yeng Y X, Ghebrebrhan M, Bermel P, Chan W R, Joannopoulos J D, Soljacic M, Celanovic I. Enabling high-temperature nanophotonics for energy applications. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2280–2285

    Google Scholar 

  88. Rinnerbauer V, Yeng Y X, Senkevich J J, Joannopoulos J D, Soljačić M, Celanovic I. Large area selective emitters/absorbers based on 2D tantalum photonic crystals for high-temperature energy applications. In: Proceedings of SPIE—The International Society for Optical Engineering (Photonic and Phononic Properties of Engineered Nanostructures III), San Francisco, CA, USA, 2013, 8632: 863207

  89. Lee B J, Fu C J, Zhang Z M. Coherent thermal emission from one-dimensional photonic crystals. Applied Physics Letters, 2005, 87 (7): 071904

    Google Scholar 

  90. Setién-Fernández I, Echániz T, González-Fernández L, Pérez-Sáez R B, Céspedes E, Sánchez-García J A, Álvarez-Fraga L, Escobar Galindo R, Albella J M, Prieto C, Tello M J. First spectral emissivity study of a solar selective coating in the 150°C–600°C temperature range. Solar Energy Materials and Solar Cells, 2013, 117: 390–395

    Google Scholar 

  91. Echániz T, Setién-Fernández I, Pérez-Sáez R B, Prieto C, Galindo R E, Tello M J. Importance of the spectral emissivity measurements at working temperature to determine the efficiency of a solar selective coating. Solar Energy Materials and Solar Cells, 2015, 140: 249–252

    Google Scholar 

  92. Dan A, Basu B, Echániz T, González de Arrieta I, López G A, Barshilia H C. Effects of environmental and operational variability on the spectrally selective properties of W/WAlN/WAlON/Al2O3-based solar absorber coating. Solar Energy Materials and Solar Cells, 2018, 185: 342–350

    Google Scholar 

  93. Jyothi J, Soum-Glaude A, Nagaraja H S, Barshilia H C. Measurement of high temperature emissivity and photothermal conversion efficiency of TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO spectrally selective coating. Solar Energy Materials and Solar Cells, 2017, 171: 123–130

    Google Scholar 

  94. Chen J, Guo J, Chen L Y. Super-wideband perfect solar light absorbers using titanium and silicon dioxide thin-film cascade optical nanocavities. Optical Materials Express, 2016, 6(12): 3804–3813

    Google Scholar 

  95. Li Y, Lin C, Zhou D, An Y, Li D, Chi C, Huang H, Yang S, Tso C Y, Chao C Y H, Huang B. Scalable all-ceramic nanofilms as highly efficient and thermally stable selective solar absorbers. Nano Energy, 2019, 64: 103947

    Google Scholar 

  96. Chang C C, Kort-Kamp W J M, Nogan J, Luk T S, Azad A K, Taylor A J, Dalvit D A R, Sykora M, Chen H T. High-temperature refractory metasurfaces for solar thermophotovoltaic energy harvesting. Nano Letters, 2018, 18(12): 7665–7673

    Google Scholar 

  97. Li W, Guler U, Kinsey N, Naik G V, Boltasseva A, Guan J, Shalaev V M, Kildishev A V. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Advanced Materials, 2014, 26(47): 7959–7965

    Google Scholar 

  98. Huang Y, Liu L, Pu M, Li X, Ma X, Luo X. A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum. Nanoscale, 2018, 10(17): 8298–8303

    Google Scholar 

  99. Rinnerbauer V, Lenert A, Bierman D M, Yeng Y X, Chan W R, Geil R D, Senkevich J J, Joannopoulos J D, Wang E N, Soljačić M, Celanovic I. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Advanced Energy Materials, 2014, 4(12): 1400334

    Google Scholar 

  100. Li P, Liu B, Ni Y, Liew K K, Sze J, Chen S, Shen S. Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion. Advanced Materials, 2015, 27(31): 4585–4591

    Google Scholar 

  101. Sai H, Yugami H, Kanamori Y, Hane K. Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion. Solar Energy Materials and Solar Cells, 2003, 79(1): 35–49

    Google Scholar 

  102. Sakakibara R, Stelmakh V, Chan W R, Ghebrebrhan M, Joannopoulos J D, Soljačić M, Čelanović I. Practical emitters for thermophotovoltaics: a review. Journal of Photonics for Energy, 2019, 9(3): 032713

    Google Scholar 

  103. Datas A, Martí A. Thermophotovoltaic energy in space applications: review and future potential. Solar Energy Materials and Solar Cells, 2017, 161: 285–296

    Google Scholar 

  104. Tervo E J, Bagherisereshki E, Zhang Z M. Near-field radiative thermoelectric energy converters: a review. Frontiers in Energy, 2018, 12(1): 5–21

    Google Scholar 

  105. Heinzel A, Boerner V, Gombert A, Bläsi B, Wittwer V, Luther J. Radiation filters and emitters for the NIR based on periodically structured metal surfaces. Journal of Modern Optics, 2000, 47(13): 2399–2419

    Google Scholar 

  106. Marquier F, Joulain K, Mulet J P, Carminati R, Greffet J J, Chen Y. Coherent spontaneous emission of light by thermal sources. Physical Review. B, 2004, 69(15): 155412

    Google Scholar 

  107. Maruyama S, Kashiwa T, Yugami H, Esashi M. Thermal radiation from two-dimensionally confined modes in microcavities. Applied Physics Letters, 2001, 79(9): 1393–1395

    Google Scholar 

  108. Sai H, Kanamori Y, Yugami H. High-temperature resistive surface grating for spectral control of thermal radiation. Applied Physics Letters, 2003, 82(11): 1685–1687

    Google Scholar 

  109. Sai H, Yugami H. Thermophotovoltaic generation with selective radiators based on tungsten surface gratings. Applied Physics Letters, 2004, 85(16): 3399–3401

    Google Scholar 

  110. Kondo T, Hasegawa S, Yanagishita T, Kimura N, Toyonaga T, Masuda H. Control of thermal radiation in metal hole array structures formed by anisotropic anodic etching of Al. Optics Express, 2018, 26(21): 27865–27872

    Google Scholar 

  111. Fang J, Xuan Y, Li Q, Fan D, Huang J. Investigation on the coupling effect of thermochromism and microstructure on spectral properties of structured surfaces. Applied Surface Science, 2012, 258(18): 7140–7145

    Google Scholar 

  112. Huang J G, Xuan Y M, Li Q. Narrow-band thermal radiation based on microcavity resonant effect. Chinese Physics Letters, 2014, 31 (9): 094207

    Google Scholar 

  113. Fan D, Li Q, Xuan Y M, Xia Y. Thermal radiation from silicon microcavity coated with thermochromic film. Solar Energy Materials and Solar Cells, 2016, 144: 331–338

    Google Scholar 

  114. Woolf D, Hensley J, Cederberg J G, Bethke D T, Grine A D, Shaner E A. Heterogeneous metasurface for high temperature selective emission. Applied Physics Letters, 2014, 105(8): 081110

    Google Scholar 

  115. Stelmakh V, Rinnerbauer V, Chan W R, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I. Performance of tantalum-tungsten alloy selective emitters in thermophotovoltaic systems. In: Proceedings of SPIE—The International Society for Optical Engineering, (Energy Harvesting and Storage: Materials, Devices, and Applications V), Baltimore, MD, USA, 2014, 9115: 911504

  116. Stelmakh V, Rinnerbauer V, Chan W R, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I. Tantalum-tungsten alloy photonic crystals for high-temperature energy conversion systems. In: Proceedings of SPIE—The International Society for Optical Engineering (Photonic Crystal Materials and Devices XI), Brussels, Belgium, 2014, 9127: 91270Q

  117. Lee B J, Chen Y B, Zhang Z M. Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy. Optics Letters, 2008, 33(3): 204–206

    Google Scholar 

  118. Lee B J, Zhang Z M. Indirect measurements of coherent thermal emission from a truncated photonic crystal structure. Journal of Thermophysics and Heat Transfer, 2009, 23(1): 9–17

    Google Scholar 

  119. Lin S Y, Moreno J, Fleming J G. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Applied Physics Letters, 2003, 83(2): 380–382

    Google Scholar 

  120. Lee J H, Kim Y S, Constant K, Ho K M. Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission. Advanced Materials, 2007, 19(6): 791–794

    Google Scholar 

  121. Qi M, Lidorikis E, Rakich P T, Johnson S G, Joannopoulos J D, Ippen E P, Smith H I. A three-dimensional optical photonic crystal with designed point defects. Nature, 2004, 429(6991): 538–542

    Google Scholar 

Download references

Acknowledgements

This work was supported by the China Scholarship Council (No. 201806320236), the Academic Award for Outstanding Doctoral Candidates of Zhejiang University (No. 2018071), the Key Research and Development Program of Ningxia Hui Autonomous Region (No. 2018BCE01004), and the US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijun Zhou or Zhuomin M. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, S., Chen, C., Loutzenhiser, P.G. et al. Spectral emittance measurements of micro/nanostructures in energy conversion: a review. Front. Energy 14, 482–509 (2020). https://doi.org/10.1007/s11708-020-0693-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-020-0693-0

Keywords

Navigation