Skip to main content
Log in

Charge carrier transport in thin conjugated polymer films: influence of morphology and polymer/substrate interactions

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The performance of conjugated polymer (CP)-based electronic devices relies on optimal charge carrier mobilities, which are determined by monomeric architecture, degree of polymerization, chain conformation, and the nano- and mesoscale morphologies. With regard to the latter, we discuss two effects that have received limited attention in the literature, yet important for device performance optimization: (1) the role of morphological disorder and of CP/substrate interactions on the in-plane and out-of-plane carrier transport in CPs; (2) the impact of morphological disorder on charge transfer at the CP/substrate interface. The emergence of film thickness-dependent carrier mobilities, varying over two orders of magnitude within a length scale of 200 nm, and band-bending phenomena, extending tens of nanometers within the CP, are associated with these effects. These findings suggest areas for further research in order to enable widespread applications of next-generation CP-based devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N, Smith P, Toney MF, Salleo A (2013) A General relationship between disorder, aggregation and charge transport in conjugated polymers. Nat Mater 12(11):1038–1044. https://doi.org/10.1038/nmat3722

    Article  CAS  PubMed  Google Scholar 

  2. Himmelberger S, Salleo A (2015) Engineering semiconducting polymers for efficient charge transport. MRS Commun 5(3):383–395. https://doi.org/10.1557/mrc.2015.44

    Article  CAS  Google Scholar 

  3. Hoffmann ST, Bässler H, Köhler A (2010) What determines inhomogeneous broadening of electronic transitions in conjugated polymers? J Phys Chem B 114(51):17037–17048. https://doi.org/10.1021/jp107357y

    Article  CAS  PubMed  Google Scholar 

  4. Mollinger SA, Salleo A, Spakowitz AJ (2016) Anomalous charge transport in conjugated polymers reveals underlying mechanisms of trapping and percolation. ACS Cent Sci 2(12):910–915. https://doi.org/10.1021/acscentsci.6b00251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Park KS, Kwok JJ, Dilmurat R, Qu G, Kafle P, Luo X, Jung S-H, Olivier Y, Lee J-K, Mei J, Beljonne D, Diao Y (2019) Tuning conformation, assembly, and charge transport properties of conjugated polymers by printing flow. Sci Adv 5(8). https://doi.org/10.1126/sciadv.aaw7757

  6. Haneef HF, Zeidell AM, Jurchescu OD (2020) Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices. J Mater Chem C 8(3):759–787. https://doi.org/10.1039/C9TC05695E

    Article  CAS  Google Scholar 

  7. Wang S, Fabiano S, Himmelberger S, Puzinas S, Crispin X, Salleo A, Berggren M (2015) Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers. Proc Natl Acad Sci 112(34):10599–10604. https://doi.org/10.1073/pnas.1501381112

  8. Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H (2020) Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat Mater 19(May):491–502. https://doi.org/10.1038/s41563-020-0647-2

    Article  CAS  PubMed  Google Scholar 

  9. Luo C, Kyaw AKK, Perez LA, Patel S, Wang M, Grimm B, Bazan GC, Kramer EJ, Heeger AJ (2014) General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett 14(5):2764–2771. https://doi.org/10.1021/nl500758w

    Article  CAS  PubMed  Google Scholar 

  10. Son SY, Kim Y, Lee J, Lee G-Y, Park W-T, Noh Y-Y, Park CE, Park T (2016) High-field-effect mobility of low-crystallinity conjugated polymers with localized aggregates. J Am Chem Soc 138(26):8096–8103. https://doi.org/10.1021/jacs.6b01046

    Article  CAS  PubMed  Google Scholar 

  11. Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA (2016) Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1:16050

    Article  CAS  Google Scholar 

  12. Patel SN, Chabinyc ML (2017) Anisotropies and the thermoelectric properties of semiconducting polymers. J Appl Polym Sci 134(3). https://doi.org/10.1002/app.44403

  13. Huang B, Glynos E, Frieberg B, Yang H, Green PF (2012) Effect of thickness-dependent structural evolution on out-of-plane hole mobility in poly(3-hexylthiophene) films. ACS Appl Mater Interfaces. https://doi.org/10.1021/am3011252

  14. Green PF, Glynos E, Frieberg B (2015) Polymer films of nanoscale thickness: linear chain and star-shaped macromolecular architectures. MRS Commun 5(3):423–434. https://doi.org/10.1557/mrc.2015.56

    Article  CAS  Google Scholar 

  15. Rivnay J, Noriega R, Northrup JE, Kline RJ, Toney MF, Salleo A (2011) Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Phys Rev B - Condens Matter Mater Phys 83(12):121306–121309. https://doi.org/10.1103/PhysRevB.83.121306

    Article  CAS  Google Scholar 

  16. Rivnay J, Noriega R, Kline RJ, Salleo A, Toney MF (2011) Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Phys Rev B - Condens Matter Mater Phys 84(4):045203–045206. https://doi.org/10.1103/PhysRevB.84.045203

    Article  CAS  Google Scholar 

  17. Shi X, Nádaždy V, Perevedentsev A, Frost JM, Wang X, von Hauff E, MacKenzie RCI, Nelson J (2019) Relating chain conformation to the density of states and charge transport in conjugated polymers: the role of the β-phase in poly(9,9-dioctylfluorene). Phys Rev X 9 (2):21038. https://doi.org/10.1103/PhysRevX.9.021038

  18. Gu K, Snyder CR, Onorato J, Luscombe CK, Bosse AW, Loo Y-L (2018) Assessing the huang–brown description of tie chains for charge transport in conjugated polymers. ACS Macro Lett 7(11):1333–1338. https://doi.org/10.1021/acsmacrolett.8b00626

    Article  CAS  Google Scholar 

  19. Schwarze M, Gaul C, Scholz R, Bussolotti F, Hofacker A, Schellhammer KS, Nell B, Naab BD, Bao Z, Spoltore D, Vandewal K, Widmer J, Kera S, Ueno N, Ortmann F, Leo K (2019) Molecular parameters responsible for thermally activated transport in doped organic semiconductors. Nat Mater 18(3):242–248. https://doi.org/10.1038/s41563-018-0277-0

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Bronstein H, Kronemeijer AJ, Smith J, Kim Y, Kline RJ, Richter LJ, Anthopoulos TD, Sirringhaus H, Song K, Heeney M, Zhang W, McCulloch I, Delongchamp DM (2013) Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer. Nat Commun 4:2238. https://doi.org/10.1038/ncomms3238

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Tatum WK, Onorato JW, Zhang Y, Luscombe CK (2018) Low elastic modulus and high charge mobility of low-crystallinity indacenodithiophene-based semiconducting polymers for potential applications in stretchable electronics. Macromolecules 51(16):6352–6358. https://doi.org/10.1021/acs.macromol.8b00898

    Article  CAS  Google Scholar 

  22. Zhao Y, Guo Y, Liu Y (2013) 25th anniversary article: recent advances in n-type and ambipolar organic field-effect transistors. Adv Mater 25(38):5372–5391. https://doi.org/10.1002/adma.201302315

    Article  CAS  PubMed  Google Scholar 

  23. Nielsen CB, Turbiez M, McCulloch I (2013) Recent advances in the development of semiconducting dpp-containing polymers for transistor applications. Adv Mater 25(13):1859–1880. https://doi.org/10.1002/adma.201201795

    Article  CAS  PubMed  Google Scholar 

  24. Kline RJ, Mcgehee MD, Kadnikova EN, Liu J, Fre JMJ, Toney MF (2005) Dependence of regioregular poly (3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules:3312–3319

  25. Zen A, Pflaum J, Hirschmann S, Zhuang W, Jaiser F, Asawapirom U, Rabe JP, Scherf U, Neher D (2004) Effect of molecular weight and annealing of poly(3-hexylthiophene) s on the performance of organic field-effect transistors. Adv Funct Mater 14(8):757–764. https://doi.org/10.1002/adfm.200400017

    Article  CAS  Google Scholar 

  26. Dong BX, Smith M, Strzalka J, Li H, Mcneil AJ, Stein GE, Green PF (2018) Molecular weight dependent structure and charge transport in maple-deposited poly(3-hexylthiophene) thin films. J Polym Sci Part B Polym Phys:652–662. https://doi.org/10.1002/polb.24588

  27. Koch FPV, Rivnay J, Foster S, Müller C, Downing JM, Buchaca-Domingo E, Westacott P, Yu L, Yuan M, Baklar M, Fei Z, Luscombe C, McLachlan MA, Heeney M, Rumbles G, Silva C, Salleo A, Nelson J, Smith P, Stingelin N (2013) The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors-poly(3-hexylthiophene), a model study. Prog Polym Sci:1978–1989. https://doi.org/10.1016/j.progpolymsci.2013.07.009

  28. Gasperini A, Sivula K (2013) Effects of molecular weight on microstructure and carrier transport in a semicrystalline poly (thieno)thiophene. Macromolecules 46(23):9349–9358. https://doi.org/10.1021/ma402027v

    Article  CAS  Google Scholar 

  29. Green PF (2003) Wetting and dynamics of structured liquid films. J Polym Sci Part B Polym Phys 41(19):2219–2235. https://doi.org/10.1002/polb.10601

    Article  CAS  Google Scholar 

  30. Coulon G, Russell TP, Deline VR, Green PF (1989) Surface-induced orientation of symmetric, diblock copolymers: a secondary ion mass-spectrometry study. Macromolecules 22(6):2581–2589. https://doi.org/10.1021/ma00196a006

    Article  CAS  Google Scholar 

  31. Himmelberger S, Dacuña J, Rivnay J, Jimison LH, McCarthy-Ward T, Heeney M, McCulloch I, Toney MF, Salleo A (2013) Effects of confinement on microstructure and charge transport in high performance semicrystalline polymer semiconductors. Adv Funct Mater 23(16):2091–2098. https://doi.org/10.1002/adfm.201202408

    Article  CAS  Google Scholar 

  32. Dong BX, Amonoo JA, Purdum GE, Loo YL, Green PF (2016) Enhancing carrier mobilities in organic thin-film transistors through morphological changes at the semiconductor/dielectric interface using supercritical carbon dioxide processing. ACS Appl Mater Interfaces 8(45):31144–31153. https://doi.org/10.1021/acsami.6b08248

    Article  CAS  PubMed  Google Scholar 

  33. Kim DH, Jang Y, Park YD, Cho K (2006) Controlled one-dimensional nanostructures in poly(3-hexylthiophene) thin film for high-performance organic field-effect transistors. J Phys Chem B 110(32):15763–15768. https://doi.org/10.1021/jp062899y

    Article  CAS  PubMed  Google Scholar 

  34. Lange I, Blakesley JC, Frisch J, Vollmer A, Koch N, Neher D (2011) Band bending in conjugated polymer layers. Phys Rev Lett 106(21):216402. https://doi.org/10.1103/PhysRevLett.106.216402

    Article  CAS  PubMed  Google Scholar 

  35. Chua L-L, Zaumseil J, Chang J-F, Ou EC-W, Ho PK-H, Sirringhaus H, Friend RH (2005) General observation of n-type field-effect behaviour in organic semiconductors. Nature 434(7030):194–199. https://doi.org/10.1038/nature03376

    Article  CAS  PubMed  Google Scholar 

  36. Chang J-F, Sun B, Breiby DW, Nielsen MM, Sölling TI, Giles M, McCulloch I, Sirringhaus H (2004) Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem Mater 16(23):4772–4776. https://doi.org/10.1021/cm049617w

    Article  CAS  Google Scholar 

  37. Merlo JA, Frisbie CD (2004) Field effect transport and trapping in regioregular polythiophene nanofibers. J Phys Chem B 108(50):19169–19179. https://doi.org/10.1021/jp047023a

    Article  CAS  Google Scholar 

  38. Li A, Bilby D, Dong BX, Amonoo J, Kim J, Green PF (2015) Macroscopic Alignment of poly(3-hexylthiophene) for enhanced long-range collection of photogenerated carriers. J Polym Sci Part B Polym Phys 54:180–188. https://doi.org/10.1002/polb.23888

    Article  CAS  Google Scholar 

  39. Brinkmann M (2011) Structure and morphology control in thin films of regioregular poly(3-hexylthiophene). J Polym Sci Part B Polym Phys 49(17):1218–1233. https://doi.org/10.1002/polb.22310

    Article  CAS  Google Scholar 

  40. Müller C, Aghamohammadi M, Himmelberger S, Sonar P, Garriga M, Salleo A, Campoy-Quiles M (2013) One-step macroscopic alignment of conjugated polymer systems by epitaxial crystallization during spin-coating. Adv Funct Mater n/a-n/a. https://doi.org/10.1002/adfm.201202983

  41. Li A, Dong BX, Green P (2015) Influence of morphological disorder on in- and out-of-plane charge transport in conjugated polymer films. MRS Commun 5(04):593–598. https://doi.org/10.1557/mrc.2015.72

    Article  CAS  Google Scholar 

  42. Dong BX, Li A, Strzalka J, Stein GE, Green PF (2017) Molecular organization in maple-deposited conjugated polymer thin films and the implications for carrier transport characteristics. J Polym Sci Part B Polym Phys 55(1):39–48. https://doi.org/10.1002/polb.24237

    Article  CAS  Google Scholar 

  43. Caricato AP, Luches A (2011) Applications of the matrix-assisted pulsed laser evaporation method for the deposition of organic, biological and nanoparticle thin films: a review. Appl Phys A Mater Sci Process 105(3):565–582. https://doi.org/10.1007/s00339-011-6600-0

    Article  CAS  Google Scholar 

  44. Mcgi RA, Chriseya DB, Piqué A, Misnac TE, Washington DC (1998) Matrix Assisted pulsed laser evaporation (MAPLE) of functionalized polymers: applications with chemical sensors. Laser Appl Microelectron Optoelectron Manuf III 3274:255–266

    Article  Google Scholar 

  45. Piqué A, McGill RA, Chrisey DB, Leonhardt D, Mslna TE, Spargo BJ, Callahan JH, Vachet RW, Chung R, Bucaro MA (1999) Growth of organic thin films by the matrix assisted pulsed laser evaporation (MAPLE) technique. Thin Solid Films 355:536–541. https://doi.org/10.1016/S0257-8972(99)00376-X

    Article  Google Scholar 

  46. Wang Y, Jeong H, Chowdhury M, Arnold CB, Priestley RD (2018) Exploiting physical vapor deposition for morphological control in semi-crystalline polymer films. Polym Cryst 1(4):e10021. https://doi.org/10.1002/pcr2.10021

    Article  CAS  Google Scholar 

  47. Shepard KB, Priestley RD (2013) MAPLE deposition of macromolecules. Macromol Chem Phys 214(8):862–872. https://doi.org/10.1002/macp.201200621

    Article  CAS  Google Scholar 

  48. Pate R, McCormick R, Chen L, Zhou W, Stiff-Roberts AD (2011) RIR-MAPLE deposition of conjugated polymers for application to optoelectronic devices. Appl Phys A Mater Sci Process 105(3):555–563. https://doi.org/10.1007/s00339-011-6598-3

    Article  CAS  Google Scholar 

  49. Shepard KB, Guo Y, Arnold CB, Priestley RD (2013) Nanostructured morphology of polymer films prepared by matrix assisted pulsed laser evaporation. Appl Phys A Mater Sci Process 110(4):771–777. https://doi.org/10.1007/s00339-012-7151-8

    Article  CAS  Google Scholar 

  50. Leveugle E, Sellinger A, Fitz-Gerald JM, Zhigilei LV (2007) Making molecular balloons in laser-induced explosive boiling of polymer solutions. Phys Rev Lett 98(21):1–4. https://doi.org/10.1103/PhysRevLett.98.216101

    Article  CAS  Google Scholar 

  51. Leveugle E, Zhigilei LV (2007) Molecular dynamics simulation study of the ejection and transport of polymer molecules in matrix-assisted pulsed laser evaporation. J Appl Phys 102(7):1–19. https://doi.org/10.1063/1.2783898

    Article  CAS  Google Scholar 

  52. Spano FC (2005) Modeling disorder in polymer aggregates: the optical spectroscopy of regioregular poly(3-hexylthiophene) thin films. J Chem Phys 122(23):234701. https://doi.org/10.1063/1.1914768

    Article  CAS  PubMed  Google Scholar 

  53. Sirringhaus H (2014) 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater 26(9):1319–1335. https://doi.org/10.1002/adma.201304346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Menšík M, Toman P, Bielecka U, Bartkowiak W, Pfleger J, Paruzel B (2018) On the methodology of the determination of charge concentration dependent mobility from organic field-effect transistor characteristics. Phys Chem Chem Phys 20(4):2308–2319. https://doi.org/10.1039/c7cp06423c

    Article  CAS  PubMed  Google Scholar 

  55. Juska G, Arlauskas K, Osterbacka R, Stubb H (2000) Time-of-flight measurements in thin films of regioregular poly ž 3-hexyl thiophene. 173–176

  56. Carlo AM, Study S, Bassler H (1993) Charge transport in disordered organic photoconductors 15

  57. Miller A, Abrahams E (1960) Impurity conduction at low concentrations. Phys Rev 120(3):745–755. https://doi.org/10.1103/PhysRev.120.745

    Article  CAS  Google Scholar 

  58. Toman P, Menšík M, Bartkowiak W, Pfleger J (2017) Modelling of the charge carrier mobility in disordered linear polymer materials. Phys Chem Chem Phys 19(11):7760–7771. https://doi.org/10.1039/c6cp07789g

    Article  CAS  PubMed  Google Scholar 

  59. Toman P, Menšík M, Pfleger J (2018) Electric field dependence of charge mobility in linear conjugated polymers. Chem Pap 72(7):1719–1728. https://doi.org/10.1007/s11696-018-0448-0

    Article  CAS  Google Scholar 

  60. Kordt P, van der Holst JJM, Al Helwi M, Kowalsky W, May F, Badinski A, Lennartz C, Andrienko D (2015) Modeling of organic light emitting diodes: from molecular to device properties. Adv Funct Mater 25(13):1955–1971. https://doi.org/10.1002/adfm.201403004

    Article  CAS  Google Scholar 

  61. Gali SM, D’Avino G, Aurel P, Han G, Yi Y, Papadopoulos TA, Coropceanu V, Brédas J-L, Hadziioannou G, Zannoni C, Muccioli L (2017) Energetic fluctuations in amorphous semiconducting polymers: impact on charge-carrier mobility. J Chem Phys 147(13):134904. https://doi.org/10.1063/1.4996969

    Article  CAS  PubMed  Google Scholar 

  62. Poelking C, Andrienko D (2013) Effect of polymorphism, regioregularity and paracrystallinity on charge transport in poly(3-hexylthiophene) [P3HT] nanofibers. Macromolecules 46(22):8941–8956. https://doi.org/10.1021/ma4015966

    Article  CAS  Google Scholar 

  63. Poelking C, Daoulas K, Troisi A, Andrienko D (2014) In: Ludwigs S (ed) Morphology and charge transport in P3HT: a theorist’s perspective BT - P3HT revisited – from molecular scale to solar cell devices. Springer, Berlin, pp 139–180. https://doi.org/10.1007/12_2014_277

    Chapter  Google Scholar 

  64. Tanase C, Meijer EJ, Blom PWM, de Leeuw DM (2003) Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys Rev Lett 91(21):216601. https://doi.org/10.1103/PhysRevLett.91.216601

    Article  CAS  PubMed  Google Scholar 

  65. Gu K, Loo YL (2019) The polymer physics of multiscale charge transport in conjugated systems. J Polym Sci Part B Polym Phys:1559–1571. https://doi.org/10.1002/polb.24873

  66. Pate R, Stiff-Roberts AD (2009) The impact of laser-target absorption depth on the surface and internal morphology of matrix-assisted pulsed laser evaporated conjugated polymer thin films. Chem Phys Lett 477(4–6):406–410. https://doi.org/10.1016/j.cplett.2009.07.038

    Article  CAS  Google Scholar 

  67. Pate R, Lantz KR, Stiff-Roberts AD (2008) Tabletop resonant infrared matrix-assisted pulsed laser evaporation of light-emitting organic thin films. IEEE J Sel Top Quantum Electron 14(4):1022–1030. https://doi.org/10.1109/JSTQE.2008.915625

    Article  CAS  Google Scholar 

  68. Stiff-Roberts AD, Ge W (2017) Organic/hybrid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE). Appl Phys Rev 4(4). https://doi.org/10.1063/1.5000509

  69. Wang Y, Gu K, Soman A, Gu T, Register RA, Loo Y-L, Priestley RD (2020) Circumventing macroscopic phase separation in immiscible polymer mixtures by bottom-up deposition. Macromolecules 53(14):5740–5746. https://doi.org/10.1021/acs.macromol.0c00916

    Article  CAS  Google Scholar 

  70. Glynos E, Frieberg B, Oh H, Liu M, Gidley DW, Green PF (2011) Role of molecular architecture on the vitrification of polymer thin films. Phys Rev Lett 106(12):3–6. https://doi.org/10.1103/PhysRevLett.106.128301

    Article  CAS  Google Scholar 

  71. Yang Z, Fujii Y, Lee FK, Lam C, Tsui OKC (2010) Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science (80-) 328:1676–1679

    Article  CAS  Google Scholar 

  72. Priestley RD, Ellison CJ, Broadbelt LJ, Torkelson JM (2005) Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science (80-) 309(5733):456–459. https://doi.org/10.1126/science.1112217

    Article  CAS  Google Scholar 

  73. Stafford CM, Harrison C, Beers KL, Karim A, Amis EJ, VanLandingham MR, Kim H-C, Volksen W, Miller RD, Simonyi EE (2004) A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat Mater 3(8):545–550. https://doi.org/10.1038/nmat1175

    Article  CAS  PubMed  Google Scholar 

  74. O’Connell PA, Hutcheson SA, McKenna GB (2008) Creep behavior of ultra-thin polymer films. J Polym Sci Part B Polym Phys 46(18):1952–1965. https://doi.org/10.1002/polb.21531

    Article  CAS  Google Scholar 

  75. Chung PC, Glynos E, Green PF (2014) The elastic mechanical response of supported thin polymer films. Langmuir 30(50):15200–15205. https://doi.org/10.1021/la503879v

    Article  CAS  PubMed  Google Scholar 

  76. McCaig MS, Paul DR (2000) Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging. Part I. Experimental observations. Polymer (Guildf) 41(2):629–637. https://doi.org/10.1016/S0032-3861(99)00172-X

    Article  CAS  Google Scholar 

  77. McCaig MS, Paul DR, Barlow JW (2000) Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging. Part II. Mathematical model. Polymer (Guildf) 41(2):639–648. https://doi.org/10.1016/S0032-3861(99)00173-1

    Article  CAS  Google Scholar 

  78. Yang H, Glynos E, Huang B, Green PF (2013) Out-of-plane carrier transport in conjugated polymer thin films: role of morphology. J Phys Chem C 117(19):9590–9597. https://doi.org/10.1021/jp402254r

    Article  CAS  Google Scholar 

  79. Huang B, Glynos E, Frieberg B, Yang H, Green PF (2012) Effect of thickness-dependent microstructure on the out-of-plane hole mobility in poly(3-hexylthiophene) films. ACS Appl Mater Interfaces 4(10):5204–5210. https://doi.org/10.1021/am3011252

    Article  CAS  PubMed  Google Scholar 

  80. Jimison LH, Himmelberger S, Duong DT, Rivnay J, Toney MF, Salleo A (2013) Vertical confinement and interface effects on the microstructure and charge transport of P3HT thin films. J Polym Sci Part B Polym Phys 51(7):611–620. https://doi.org/10.1002/polb.23265

    Article  CAS  Google Scholar 

  81. Duong DT, Toney MF, Salleo A (2012) Role of confinement and aggregation in charge transport in semicrystalline polythiophene thin films. Phys Rev B 86(20):205205. https://doi.org/10.1103/PhysRevB.86.205205

    Article  CAS  Google Scholar 

  82. Dong BX, Huang B, Tan A, Green PF (2014) Nanoscale orientation effects on carrier transport in a low-band-gap polymer. J Phys Chem C 118(31):17490–17498. https://doi.org/10.1021/jp506374m

    Article  CAS  Google Scholar 

  83. Hou J, Chen H-Y, Zhang S, Chen RI, Yang Y, Wu Y, Li G (2009) Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. J Am Chem Soc 131(43):15586–15587. https://doi.org/10.1021/ja9064975

    Article  CAS  PubMed  Google Scholar 

  84. Chen H, Hou J, Zhang S, Liang Y, Yang G, Yang Y (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics 3(November):649–653. https://doi.org/10.1038/NPHOTON.2009.192

    Article  CAS  Google Scholar 

  85. Aubry TJ, Ferreira AS, Yee PY, Aguirre JC, Hawks SA, Fontana MT, Schwartz BJ, Tolbert SH (2018) Processing methods for obtaining a face-on crystalline domain orientation in conjugated polymer-based photovoltaics. J Phys Chem C 122(27):15078–15089. https://doi.org/10.1021/acs.jpcc.8b02859

    Article  CAS  Google Scholar 

  86. Dinelli F, Murgia M, Levy P, Cavallini M, Biscarini F, De Leeuw DM (2004) Spatially correlated charge transport in organic thin film transistors. Phys Rev Lett 92(11):116802–116801. https://doi.org/10.1103/PhysRevLett.92.116802

    Article  CAS  PubMed  Google Scholar 

  87. Joseph Kline R, McGehee MD, Toney MF (2006) Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nat Mater 5(3):222–228. https://doi.org/10.1038/nmat1590

    Article  CAS  Google Scholar 

  88. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401(6754):685–688. https://doi.org/10.1038/44359

    Article  CAS  Google Scholar 

  89. Diao Y, Shaw L, Bao Z, Mannsfeld SCB (2014) Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ Sci 7(7):2145–2159. https://doi.org/10.1039/c4ee00688g

    Article  CAS  Google Scholar 

  90. Patel BB, Diao Y (2017) Multiscale assembly of solution-processed organic electronics: the critical roles of confinement, fluid flow, and interfaces. Nanotechnology 29(4):44004. https://doi.org/10.1088/1361-6528/aa9d7c

    Article  CAS  Google Scholar 

  91. Despotopoulou MM, Frank CW, Miller RD, Rabolt JF (1995) Role of the Restricted geometry on the morphology of ultrathin poly (di-n-hexylsilane) films. Macromolecules 28(19):6687–6688. https://doi.org/10.1021/ma00123a042

    Article  CAS  Google Scholar 

  92. Joshi S, Grigorian S, Pietsch U (2008) X-ray structural and crystallinity studies of low and high molecular weight poly(3-hexylthiophene). Phys Status Solidi 205(3):488–496. https://doi.org/10.1002/pssa.200723423

    Article  CAS  Google Scholar 

  93. Braun S, Salaneck WR, Fahlman M (2009) Energy-level alignment at organic/metal and organic/organic interfaces. Adv Mater 21(14–15):1450–1472. https://doi.org/10.1002/adma.200802893

    Article  CAS  Google Scholar 

  94. Wenderott JK, Dong BX, Green PF (2017) Band bending in conjugated polymer films: role of morphology and implications for bulk charge transport characteristics. J Mater Chem C 5:7446–7451. https://doi.org/10.1039/C7TC02302B

    Article  CAS  Google Scholar 

  95. Wenderott JK, Green PF (2018) Self-assembled monolayers at the conjugated polymer/electrode interface: implications for charge transport and band-bending behavior. ACS Appl Mater Interfaces 10(25):21458–21465. https://doi.org/10.1021/acsami.8b03624

    Article  CAS  PubMed  Google Scholar 

  96. Oehzelt M, Koch N, Heimel G (2014) Organic semiconductor density of states controls the energy level alignment at electrode interfaces. Nat Commun 5:4174. https://doi.org/10.1038/ncomms5174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Coehoorn R, Bobbert PA (2012) Effects of Gaussian disorder on charge carrier transport and recombination in organic semiconductors. Phys Status Solidi 209(12):2354–2377. https://doi.org/10.1002/pssa.201228387

    Article  CAS  Google Scholar 

  98. Dieckmann A, Bässler H (1993) An assessment of the role of dipoles on the density-of-states function of disordered molecular solids. J Chem Phys 99(10):8136–8141. https://doi.org/10.1063/1.465640

    Article  CAS  Google Scholar 

  99. Shi X-H, Sun J-X, Xiong C-H, Sun L (2016) Exponential-type density of states with clearly cutting tail for organic semiconductors. Org Electron 30:60–66. https://doi.org/10.1016/j.orgel.2015.11.023

    Article  CAS  Google Scholar 

  100. Baranovskii SD (2014) Theoretical description of charge transport in disordered organic semiconductors. Phys Status Solidi Basic Res 251(3):487–525. https://doi.org/10.1002/pssb.201350339

    Article  CAS  Google Scholar 

  101. Blakesley JC, Neher D (2011) Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells. Phys Rev B 84(7):075210. https://doi.org/10.1103/PhysRevB.84.075210

    Article  CAS  Google Scholar 

  102. Liscio A, Palermo V, Fenwick O, Braun S, Müllen K, Fahlman M, Cacialli F, Samorí P (2011) Local surface potential of π-conjugated nanostructures by kelvin probe force microscopy: effect of the sampling depth. Small 7(5):634–639. https://doi.org/10.1002/smll.201001770

    Article  CAS  PubMed  Google Scholar 

  103. Heimel G, Salzmann I, Duhm S, Rabe JP, Koch N (2009) Intrinsic surface dipoles control the energy levels of conjugated polymers. Adv Funct Mater 19(24):3874–3879. https://doi.org/10.1002/adfm.200901025

    Article  CAS  Google Scholar 

  104. Fabiano S, Yoshida H, Chen Z, Facchetti A, Loi MA (2013) Orientation-dependent electronic structures and charge transport mechanisms in ultrathin polymeric n-channel field-effect transistors. ACS Appl Mater Interfaces 5(10):4417–4422. https://doi.org/10.1021/am400786c

    Article  CAS  PubMed  Google Scholar 

  105. Bässler H (1993) Charge transport in disordered organic photoconductors a Monte Carlo Simulation Study. Phys Status Solidi 175(1):15–56. https://doi.org/10.1002/pssb.2221750102

    Article  Google Scholar 

  106. Hoffmann ST, Jaiser F, Hayer A, Bässler H, Unger T, Athanasopoulos S, Neher D, Köhler A (2013) How do disorder, reorganization, and localization influence the hole mobility in conjugated copolymers? J Am Chem Soc 135(5):1772–1782. https://doi.org/10.1021/ja308820j

    Article  CAS  PubMed  Google Scholar 

  107. Gartstein YN, Conwell EM (1994) High-field hopping mobility of polarons in disordered molecular solids. A Monte Carlo Study. Chem Phys Lett 217(1):41–47. https://doi.org/10.1016/0009-2614(93)E1346-I

    Article  CAS  Google Scholar 

  108. Karki A, Wetzelaer G-JAH, Reddy GNM, Nádaždy V, Seifrid M, Schauer F, Bazan GC, Chmelka BF, Blom PWM, Nguyen T-Q (2019) Unifying energetic disorder from charge transport and band bending in organic semiconductors. Adv Funct Mater 29(20):1901109. https://doi.org/10.1002/adfm.201901109

    Article  CAS  Google Scholar 

  109. Li CN, Kwong CY, Djurišić AB, Lai PT, Chui PC, Chan WK, Liu SY (2005) Improved performance of OLEDs with ITO surface treatments. Thin Solid Films 477(1):57–62. https://doi.org/10.1016/j.tsf.2004.08.111

    Article  CAS  Google Scholar 

  110. Kim JS, Cacialli F, Cola A, Gigli G, Cingolani R (1999) Increase of charge carriers density and reduction of hall mobilities in oxygen-plasma treated indium-tin-oxide anodes. Appl Phys Lett 75(1):19–21. https://doi.org/10.1063/1.124263

    Article  CAS  Google Scholar 

  111. Koh SE, McDonald KD, Holt DH, Dulcey CS, Chaney JA, Pehrsson PE (2006) Phenylphosphonic acid functionalization of indium tin oxide: surface chemistry and work functions. Langmuir 22(14):6249–6255. https://doi.org/10.1021/la052379e

    Article  CAS  PubMed  Google Scholar 

  112. Sharma A, Hotchkiss PJ, Marder SR, Kippelen B (2009) Tailoring the work function of indium tin oxide electrodes in electrophosphorescent organic light-emitting diodes. J Appl Phys 105(8). https://doi.org/10.1063/1.3095492

  113. Hatton RA, Day SR, Chesters MA, Willis MR (2001) Organic electroluminescent devices: enhanced carrier injection using an organosilane self assembled monolayer (SAM) derivatized ITO electrode. Thin Solid Films 394(1):291–296. https://doi.org/10.1016/S0040-6090(01)01191-9

    Article  Google Scholar 

  114. Zehner RW, Parsons BF, Hsung RP, Sita LR (1999) Tuning the work function of gold with self-assembled monolayers derived from X−[C6H4−C⋮C−]NC6H4−SH (n = 0, 1, 2; X = H, F, CH3, CF3, and OCH3). Langmuir 15(4):1121–1127. https://doi.org/10.1021/la981114f

    Article  CAS  Google Scholar 

  115. Hsiao CC, Chang CH, Hung MC, Yang NJ, Chen SA (2005) Self-assembled monolayer modification of indium tin oxide anode surface for polymer light-emitting diodes with poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene] for high performance. Appl Phys Lett 86(22):1–3. https://doi.org/10.1063/1.1942644

    Article  CAS  Google Scholar 

  116. Wang M, Hill IG (2012) Fluorinated alkyl phosphonic acid SAMs replace PEDOT:PSS in polymer semiconductor devices. Org Electron 13(3):498–505. https://doi.org/10.1016/j.orgel.2011.12.008

    Article  CAS  Google Scholar 

  117. Brown TM, Kim JS, Friend RH, Cacialli F, Daik R, Feast WJ (1999) Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer. Appl Phys Lett 75(12):1679–1681. https://doi.org/10.1063/1.124789

    Article  CAS  Google Scholar 

  118. de Jong MP, van IJzendoorn LJ, de Voigt MJA (2000) Stability of the Interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes. Appl Phys Lett 77(14):2255–2257. https://doi.org/10.1063/1.1315344

    Article  Google Scholar 

  119. Yu S-Y, Chang J-H, Wang P-S, Wu C-I, Tao Y-T (2014) Effect of ITO surface modification on the OLED device lifetime. Langmuir 30(25):7369–7376. https://doi.org/10.1021/la4049659

    Article  CAS  PubMed  Google Scholar 

  120. Demirkan K, Mathew A, Weiland C, Yao Y, Rawlett AM, Tour JM, Opila RL (2008) Energy level alignment at organic semiconductor/metal interfaces: effect of polar self-assembled monolayers at the interface. J Chem Phys 128(7):74705. https://doi.org/10.1063/1.2832306

    Article  CAS  Google Scholar 

  121. Dong BX, Strzalka J, Jiang Z, Li H, Stein GE, Green PF (2017) Crystallization mechanism and charge carrier transport in MAPLE-deposited conjugated polymer thin films. ACS Appl Mater Interfaces 9:44799–44810. https://doi.org/10.1021/acsami.7b13609

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was authored in part by Alliance for Sustainable Energy, LLC, the managed and operator of the National Renewable energy Laboratory for the U.S. Department of Energy (DOE) under contract No. DE-AC36-08G028308 (PFG). The views expressed in this article do not necessarily represent the views of the DOE or the U.S. Government.

Funding

Research presented here was enabled in part by support from the Department of Energy, Energy Frontier Research Center, Award No. DE-SC0000957.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Green.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, B.X., Wenderott, J.K. & Green, P.F. Charge carrier transport in thin conjugated polymer films: influence of morphology and polymer/substrate interactions. Colloid Polym Sci 299, 439–456 (2021). https://doi.org/10.1007/s00396-020-04725-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04725-1

Keywords

Navigation