Skip to main content
Log in

Synthesis and properties of renewable citronellol based biodegradable anionic surfactant

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

New ester functionalized branched anionic surfactant—sodium citronellyl sulfoacetate (SCSA) is developed from naturally occurring acyclic monoterpene citronellol. This new surfactant is investigated for its self-aggregation, detergent, and biodegradation properties. Surface properties of the SCSA are determined by surface tension and conductivity method. Hydrodynamic radius of the micelles formed by the new surfactant is determined by dynamic light scattering technique. Detergency and foaming properties of the new surfactant are determined by Tergotometer and Ross-Miles method respectively. Further, the biodegradation property of the SCSA was determined by the BOD method. The experimental evaluation result establishes SCSA to be a good sustainable alternative to petrochemical derived surfactants. The new surfactant demonstrated good surface activity along with excellent detergent and biodegradation properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Höfer R, Bigorra J (2007) Green chemistry—a sustainable solution for industrial specialties applications. Green Chem 9:203–212

    Article  Google Scholar 

  2. Bhadani A, Kafle A, Ogura T, Akamatsu M, Sakai K, Sakai H, Abe M (2019) Phase behavior of ester based anionic surfactants: sodium alkyl sulfoacetates. Ind Eng Chem Res 58:6235–6242

    Article  CAS  Google Scholar 

  3. Hargreaves AE, Hargreaves T (2003) Chemical formulation: an overview of surfactant-based preparations used in everyday life; Royal Society of Chemistry: Vol. 32

  4. Mudge SM, Deleo PC (2014) Estimating fatty alcohol contributions to the environment from laundry and personal care products using a market forensics approach. Environ Sci Process Impacts 16:74–80

    Article  CAS  Google Scholar 

  5. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558

    Article  CAS  Google Scholar 

  6. Bhadani A, Iwabata K, Sakai K, Koura S, Sakai H, Abe M (2015) Sustainable oleic and stearic acid based biodegradable surfactants. RSC Adv 7:10433–10442

    Article  Google Scholar 

  7. Coleman D, Gathergood N (2010) Biodegradation studies of ionic liquids. Chem Soc Rev 39:600–637

    Article  CAS  Google Scholar 

  8. Lebeuf R, Liu C-Y, Pierlot C, Nardello-Rataj V (2018) Synthesis and surfactant properties of nonionic biosourced alkylglucuronamides. ACS Sustain Chem Eng 6:2758–2766

    Article  CAS  Google Scholar 

  9. De S, Malik S, Ghosh A, Saha R, Saha B (2015) A review on natural surfactants. RSC Adv 5:65757–65767

    Article  CAS  Google Scholar 

  10. Bhadani A, Rane J, Veresmortean C, Banerjee S, John G (2015) Bio-inspired surfactants capable of generating plant volatiles. Soft Matter 11:3076–3082

    Article  CAS  Google Scholar 

  11. Bhadani A, Kafle A, Ogura T, Akamatsu M, Sakai K, Sakai H, Abe M (2020) Current perspective of sustainable surfactants based on renewable building blocks. Curr Opin Colloid Interface Sci 45:124–135

    Article  CAS  Google Scholar 

  12. Bhadani A, Endo T, Sakai K, Sakai H, Abe M (2014) Synthesis and dilute aqueous solution properties of ester functionalized cationic gemini surfactants having different ethylene oxide units as spacer. Colloid Polym Sci 292:1685–1692

    Article  CAS  Google Scholar 

  13. Bhadani A, Okano T, Ogura T, Misono T, Sakai K, Abe M, Sakai H (2016) Structural features and surfactant properties of core–shell type micellar aggregates formed by gemini piperidinium surfactants. Colloids Surf A Physicochem Eng Asp 494:147–155

    Article  CAS  Google Scholar 

  14. Bhadani A, Kafle A, Koura S, Sakai K, Sakai H, Abe M (2017) Physicochemical evaluation of micellar solution and lyotropic phases formed by self-assembled aggregates of morpholinium geminis. ACS Omega 2:5324–5334

    Article  CAS  Google Scholar 

  15. Kafle A, Akamatsu M, Bhadani A, Sakai K, Kaise C, Kaneko T, Sakai H (2018) Effects of β-sitosteryl sulfate on the properties of DPPC liposomes. J Oleo Sci 67:1511–1519

    Article  CAS  Google Scholar 

  16. Hama I, Sakaki M, Sasamoto H (1997) Effects of ethoxylate structure on surfactant properties of ethoxylated fatty methyl esters. J Am Oil Chem Soc 74:823–827

    Article  CAS  Google Scholar 

  17. Tamura T, Iihara T, Nishida S, Ohta S (1999) Cleaning performance and foaming properties of lauroylamidopropylbetaine/nonionics mixed systems. J Surfactant Deterg 2:207–211

    Article  CAS  Google Scholar 

  18. Wang R, Li Y, Li Q (2013) Synthesis and properties of dodecyldiethoxylamine oxide. J Surfactant Deterg 16:509–514

    Article  CAS  Google Scholar 

  19. Karasawa M, Hasegawa T, Komaki M, Narumi T (2006) Washing method by introducing air into an alternating flow system. J Oleo Sci 55:521–527

    Article  CAS  Google Scholar 

  20. Ushida A, Hasegawa T, Takahashi N, Nakajima T, Murao S, Narumi T, Uchiyama H (2012) Effect of mixed nanobubble and microbubble liquids on the washing rate of cloth in an alternating flow. J Surfactant Deterg 15:695–702

    Article  CAS  Google Scholar 

  21. Goon P, Bhirud RG, Kumar VV (1999) Detergency and foam studies on linear alkylbenzene sulfonate and secondary alkyl sulfonate. J Surfactant Deterg 2:489–493

    Article  CAS  Google Scholar 

  22. Yoshimura T, Ishihara K, Esumi K (2005) Sugar-based gemini surfactants with peptide bonds-synthesis, adsorption, micellization, and biodegradability. Langmuir 21:10409–10415

    Article  CAS  Google Scholar 

  23. Ashraf U, Chat OA, Maswal M, Jabeen S, Dar AA (2015) An investigation of Pluronic P123–sodium cholate mixed system: micellization, gelation and encapsulation behavior. RSC Adv 5:83608–83618

    Article  CAS  Google Scholar 

  24. Zhang Z, Xu G, Wang F, Du G (2005) Aggregation behaviors and interfacial properties of oxyethylated nonionic surfactants. J Dispers Sci Technol 26:297–302

    Article  CAS  Google Scholar 

  25. Bera A, Mandal A, Belhaj H, Kumar T (2017) Enhanced oil recovery by nonionic surfactants considering micellization, surface, and foaming properties. Pet Sci 14:362–371

    Article  CAS  Google Scholar 

  26. Gad EAM, El-Sukkary MMA, Azzam EMS (1997) Surface and thermodynamic properties of octyl, dodecyl, and cetyl sulfoacetates. Monatsh Chem - Chem Mon 128:1085–1092

    Article  CAS  Google Scholar 

  27. Venkatesan P, Cheng Y, Kahne D (1994) Hydrogen bonding in micelle formation. J Am Chem Soc 116:6955–6956

    Article  CAS  Google Scholar 

  28. Carpena P, Aguiar J, Bernaola-Galván P, Ruiz CC (2002) Problems associated with the treatment of conductivity−concentration data in surfactant solutions: simulations and experiments. Langmuir 18:6054–6058

    Article  CAS  Google Scholar 

  29. Ray GB, Chakraborty I, Ghosh S, Moulik SP (2006) A critical and comprehensive assessment of interfacial and bulk properties of aqueous binary mixtures of anionic surfactants, sodium dodecylsulfate, and sodium dodecylbenzenesulfonate. Colloid Polym Sci 285:457–469

    Article  CAS  Google Scholar 

  30. Tamura T, Kaneko Y, Ohyama M (1995) Dynamic surface tension and foaming properties of aqueous polyoxyethylene n-dodecyl ether solutions. J Colloid Interface Sci 173:493–499

    Article  CAS  Google Scholar 

  31. El-Ghaffar MAA, Sherif MH, El-Habab AT (2016) Synthesis, characterization, and evaluation of ethoxylated lauryl-myrisityl alcohol nonionic surfactants as wetting agents, anti-foamers, and minimum film forming temperature reducers in emulsion polymer lattices. J Surfactant Deterg 20:117–128

    Article  CAS  Google Scholar 

  32. Azira H, Tazerouti A, Canselier JP (2008) Study of foaming properties and effect of the isomeric distribution of some anionic surfactants. J Surfactant Deterg 11:279–286

    Article  CAS  Google Scholar 

  33. Varadaraj R, Bock J, Valint P, Zushma S, Brons N (1990) Relationship between fundamental interfacial properties and foaming in linear and branched sulfate, ethoxysulfate, and ethoxylate surfactants. J Colloid Interface Sci 140:31–34

    Article  CAS  Google Scholar 

  34. Beneventi D, Carre B, Gandini A (2001) Role of surfactant structure on surface and foaming properties. Colloids Surf A Physicochem Eng Asp 189:65–73

    Article  CAS  Google Scholar 

  35. Tadros TF (2005) Applied surfactants: principles and applications, Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA

  36. Tehrani-Bagha AR, Holmberg K (2010) Cationic ester-containing gemini surfactants: physical−chemical properties. Langmuir 26:9276–9282

    Article  CAS  Google Scholar 

  37. Guimarães AC, Meireles LM, Lemos MF, Guimarães MCC, Endringer DC, Fronza M, Scherer R (2019) Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 24:2471

    Article  CAS  Google Scholar 

  38. Gochev V, Wlcek K, Buchbauer G, Stoyanova A, Dobreva A, Schmidt E, Jirovetz L (2008) Comparative evaluation of antimicrobial activity and composition of rose oils from various geographic origins, in particular bulgarian rose oil. Nat Prod Commun 3:1063–1068

    CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Nikkol Group, Cosmos Technical Center, Japan, for the scale up production of SCSA surfactant in the batch process in their research center.

Funding

There is no source of financial funding for this research. However, authors are thankful to Tokyo University of Science and Acteiive Research & Development Company, Japan, for research support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Avinash Bhadani or Masahiko Abe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhadani, A., Hokyun, J., Kafle, A. et al. Synthesis and properties of renewable citronellol based biodegradable anionic surfactant. Colloid Polym Sci 298, 1543–1550 (2020). https://doi.org/10.1007/s00396-020-04735-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04735-z

Keywords

Navigation