Skip to main content
Log in

The Hidden Ramsauer-Townsend Effect in Positron Scattering by Rare Gas Atoms

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The aim of this work is to present and discuss the Ramsauer-Townsend effect in the context of low-energy positron scattering by rare gas atoms. Opposed to what happens in electron-atom scattering, the competition between the static repulsive and polarization attractive potentials makes the phenomenon improbable in positron case. Nonetheless, we show using a semiempirical potential formulation that, while the effect is explicitly observed in the total cross sections for He and Ne, for the heavier noble gases it becomes “hidden” or implicit. We show that as the atomic polarizability increases, the suppression of s-wave goes to higher energies due to the variation of the scattering length with the polarizability. No specific signature for the effect is found in the shape of the differential cross sections but curiously, while the effect is implicit in the total cross section for Ar, it generates a minimum structure in the momentum transfer cross section. The theme is presented for non-specialist audience with emphasis in basic atomic and scattering theories along with practical results, the main objective being to boost the traditional discussions with a new view on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The same is found for Kr.

References

  1. C. Ramsauer, Ann. Phys. 369(6), 513 (1921)

    Article  Google Scholar 

  2. N.F. Mott, H.S.W Massey, The theory of atomic collisions (1949)

  3. J. Townsend, V. Bailey, London Edinburgh Dublin Philos. Mag. J. Sci. 43(255), 593 (1922)

    Article  Google Scholar 

  4. R.S. Wilde, I.I. Fabrikant, Phys. Rev. A. 98, 042703 (2018)

    Article  ADS  Google Scholar 

  5. J.J. Sakurai, J. Napolitano. Modern Quantum Mechanics, 2nd edn. (Cambridge University Press, Cambridge , 2017)

    Book  Google Scholar 

  6. R.L. Liboff, Introductory Quantum Mechanics. Addison-Wesley Publishing Company, Inc. (1980)

  7. C. Joachain, Quantum collision theory (North-Holland) (1975)

  8. D.D. Reid, J.M. Wadehra, J. Phys. B At. Mol. Opt. Phys. 47(22), 225211 (2014)

    Article  ADS  Google Scholar 

  9. B. Bransden, C. Joachain. Physics of Atoms and Molecules (Pearson Education, Longman, 1983)

    Google Scholar 

  10. A. Szabo, N. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover Books on Chemistry, Dover Publications, 1996)

    Google Scholar 

  11. F. Salvat, J.D. Mart˘nez, R. Mayol, J. Parellada, Phys. Rev. A. 36, 467 (1987)

    Article  ADS  Google Scholar 

  12. A.D. Buckingham. Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces (John Wiley & Sons, Ltd, New York, 2007), pp. 107–142

    Google Scholar 

  13. P. Atkins, R. Friedman, Molecular quantum mechanics, OUP Oxford (2011)

  14. K. Bonin, V. Kresin. Electric-dipole Polarizabilities of Atoms, Molecules and Clusters (World Scientific, Singapore, 1997)

    Book  Google Scholar 

  15. G.F. Gribakin, Rev. Phys. A. 61, 022720 (2000)

    Article  Google Scholar 

  16. D.M. Schrader, Rev. Phys. A. 20, 918 (1979)

    Article  Google Scholar 

  17. J. Mitroy, I.A. Ivanov, Phys. Rev. A. 042705, 65 (2002)

    Google Scholar 

  18. F. Arretche, M.V. Barp, A. Scheidt, E.P. Seidel, W. Tenfen, J. Phys. B At. Mol. Opt. Phys. 52(21), 215201 (2019)

    Article  ADS  Google Scholar 

  19. A. Zecca, L. Chiari, E. Trainotti, D.V. Fursa, I. Bray, A. Sarkar, S. Chattopadhyay, K. Ratnavelu, M.J. Brunger, J. Phys. B At. Mol. Opt. Phys. 45(1), 015203 (2011)

    Article  ADS  Google Scholar 

  20. A. Zecca, L. Chiari, E. Trainotti, M.J. Brunger, J. Phys. B At. Mol. Opt. Phys. 45(8), 085203 (2012)

    Article  ADS  Google Scholar 

  21. K. Bartschat, Computational atomic physics: electron and positron collisions with atoms and ions. No. v. 1 in Computational Atomic Physics: Electron and Positron Collisions with Atoms and Ions (Springer) (1996)

  22. W. Robb, Comput. Phys. Commun. 1(6), 457 (1970)

    Article  ADS  Google Scholar 

  23. K. Shigemura, M. Kitajima, M. Kurokawa, K. Toyoshima, T. Odagiri, A. Suga, H. Kato, M. Hoshino, H. Tanaka, K. Ito, Phys. Rev. A. 89, 022709 (2014)

    Article  ADS  Google Scholar 

  24. M. Kurokawa, M. Kitajima, K. Toyoshima, T. Kishino, T. Odagiri, H. Kato, M. Hoshino, H. Tanaka, K. Ito, Phys. Rev. A. 84, 062717 (2011)

    Article  ADS  Google Scholar 

  25. T.S. Stein, W.E. Kauppila, V. Pol, J.H. Smart, G. Jesion, Phys. Rev. A. 17, 1600 (1978)

    Article  ADS  Google Scholar 

  26. W.E. Kauppila, T.S. Stein, G. Jesion, Phys. Rev. Lett. 36, 580 (1976)

    Article  ADS  Google Scholar 

  27. M.S. Dababneh, W.E. Kauppila, J.P. Downing, F. Laperriere, V. Pol, J.H. Smart, T.S. Stein, Phys. Rev. A. 22, 1872 (1980)

    Article  ADS  Google Scholar 

  28. L. Chiari, A. Zecca, Eur. Phys. J. D. 68, 297 (2014)

    Article  ADS  Google Scholar 

  29. R.P. McEachran, A.G. Ryman, A.D. Stauffer, D.L. Morgan, J. Phys. B At. Mol. Phys. 10(4), 663 (1977)

    Article  ADS  Google Scholar 

  30. R.P. McEachran, D.L. Morgan, A.G. Ryman, A.D. Stauffer, J. Phys. B At. Mol. Phys. 11(5), 951 (1978)

    Article  ADS  Google Scholar 

  31. R.P. McEachran, A.G. Ryman, A.D. Stauffer, J. Phys. B At. Mol. Phys. 11(3), 551 (1978)

    Article  ADS  Google Scholar 

  32. V.A. Dzuba, V.V. Flambaum, G.F. Gribakin, W.A. King, J. Phys. B At. Mol. Opt. Phys. 29(14), 3151 (1996)

    Article  ADS  Google Scholar 

  33. D.G. Green, J.A. Ludlow, G.F. Gribakin, Phys. Rev. A. 90, 032712 (2014)

    Article  ADS  Google Scholar 

  34. M. Charlton, M. Charlton, J. Humberston, A. Dalgarno, C.U. Press, F. Read, R. Zare, Positron Physics. Cambridge Monographs on Atomic, Molecular and Chemical Physics (Cambridge University Press (2001)

  35. K.F. Canter, G.R. Heyland, Appl. Phys. 5(3), 231 (1974)

    Article  ADS  Google Scholar 

  36. J.P. Sullivan, C. Makochekanwa, A. Jones, P. Caradonna, D.S. Slaughter, J. Machacek, R.P. McEachran, D.W. Mueller, S.J. Buckman, J. Phys. B At. Mol. Opt. Phys. 44(3), 035201 (2011). https://doi.org/10.1088/0953-4075/44/3/035201

    Article  ADS  Google Scholar 

  37. T.F. O’Malley, L. Rosenberg, L. Spruch, Phys. Rev. 125, 1300 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  38. B. Bransden, Atomic collision theory. Lecture Notes and Supplements in Physics (Benjamin) (1970)

  39. R. Szmytkowski, J. Phys. A Math. Gen. 28(24), 7333 (1995)

    Article  ADS  Google Scholar 

  40. R. Szmytkowski, Rev. Phys. A. 51, 853 (1995)

    Article  Google Scholar 

  41. K. Fedus, Eur. Phys. J D. 70(12), 261 (2016)

    Article  ADS  Google Scholar 

  42. R.P. McEachran, A.G. Ryman, A.D. Stauffer, J. Phys. B At. Mol. Phys. 12(6), 1031 (1979). https://doi.org/10.1088/0022-3700/12/6/019

    Article  ADS  Google Scholar 

  43. R.P. McEachran, A.D. Stauffer, L.E.M Campbell, J. Phys. B At. Mol. Phys. 13(6), 1281 (1980). https://doi.org/10.1088/0022-3700/13/6/030

    Article  ADS  Google Scholar 

  44. H. Massey, E. Burhop, H. Gilbody, Electronic and ionic impact phenomena: collision of electrons with atoms, by H. S. W. Massey and E. H. S. Burhop. Electronic and Ionic Impact Phenomena V.1: Collision of Electrons with Atoms (Clarendon P.) (1969)

  45. J.M. Blatt, L.C. Biedenharn, Rev. Mod. Phys. 24, 258 (1952)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

M.V. Barp, E.P. Seidel, F. Arretche, and W. Tenfen would like to thank the Programa de Pós-Graduação em Física of Universidade Federal de Santa Catarina and Universidade Federal de Pelotas for the support. M.V. Barp and E.P. Seidel would like to thank the Conselho Nacional de Desenvolvimento Cientifico e Tecnológico for the support. Finally, the authors would like to thank the referee for carefully reading the manuscript and for giving constructive comments.

Funding

M.V. Barp, E.P. Seidel, F. Arretche, and W. Tenfen received financial support from Programa de Pós-Graduação em Física of Universidade Federal de Santa Catarina and Universidade Federal de Pelotas. M.V. Barp and E.P. Seidel received financial support from the Conselho Nacional de Desenvolvimento Cientifico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Arretche.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arretche, F., Barp, M.V., Tenfen, W. et al. The Hidden Ramsauer-Townsend Effect in Positron Scattering by Rare Gas Atoms. Braz J Phys 50, 844–856 (2020). https://doi.org/10.1007/s13538-020-00789-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00789-0

Keywords

Navigation