Skip to main content
Log in

Estimation of residual stress in air plasma sprayed MWCNT-reinforced 8YSZ–alumina composite coating

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Thermal barrier coating (TBC) with Al2O3 and 8YSZ as topcoat constituents has been developed. The commercially available 8YSZ (80% wt.), Al2O3 (17 and 19% wt.) and multiwall carbon nanotubes (MWCNT) (3% and 1% wt.) were plasma sprayed to produce composite coatings. A stress relaxation technique using a slow-speed diamond cutter has been used to relax the strain and determine the through-thickness residual stress in the coatings. A 3D finite element model was developed, the model was experimentally validated, and the model was used to establish a relationship between applied stress and relaxed strain. The addition of alumina increased the compressive residual stress on the surface of the coating by 42%, the addition of 1% MWCNT had a negligible effect on the residual stress on the coating surface. The further addition of MWCNT (3% wt.) resulted in tensile residual stress in the coating as a result of MWCNT agglomeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

8YSZ:

8% Yttria stabilized zirconia

MWCNT:

Multi-walled carbon nanotubes

Al2O3 :

Alumina

σr :

Residual stress (MPa)

CTE:

Coefficient of thermal expansion

PVD:

Physical vapor deposition

F:

Force (N)

A:

Cross-section area of the adhesion test specimen (mm2)

dε:

Relaxed strain

D:

Depth of cut

E:

Young’s modulus (MPa)

σmax :

Adhesion strength (MPa)

TSC:

Thermal spray coating

References

  1. Guo X, Fan Y, Gao W, Tang R, Chen K, Shen Z, Zhang L. Corrosion resistance of candidate cladding materials for supercritical water reactor. Ann Nucl Energy. 2019;127:351–63. https://doi.org/10.1016/j.anucene.2018.12.007.

    Article  Google Scholar 

  2. Pandey C, Mahapatra MM, Kumar P, Saini N. Some studies on P91 steel and their weldments. J Alloys Compd. 2018;743:332–64. https://doi.org/10.1016/j.jallcom.2018.01.120.

    Article  Google Scholar 

  3. Davis JR. Thermal Spray Technology. USA: ASM international; 2004.

    Google Scholar 

  4. Pawlowski L, Fauchais P. Thermal transport properties of thermally sprayed coatings. Int Mater Rev. 1992;37:271–89. https://doi.org/10.1179/imr.1992.37.1.271.

    Article  Google Scholar 

  5. Hardwicke CU, Lau YC. Advances in thermal spray coatings for gas turbines and energy generation: a review. J Therm Spray Technol. 2013;22:564–76. https://doi.org/10.1007/s11666-013-9904-0.

    Article  Google Scholar 

  6. Thakare JG, Pandey C, Mahapatra MM, Mulik RS. Thermal barrier coatings—a state of the art review. Met Mater Int. 2020. https://doi.org/10.1007/s12540-020-00705-w.

    Article  Google Scholar 

  7. Arif AFM, Al-athel KS, Fahd K, Arabia S. Residual stresses in thermal spray coating. Elsevier. 2017. https://doi.org/10.1016/B978-0-12-803581-8.09199-2.

    Article  Google Scholar 

  8. Teixeira V, Andritschky M, Fischer W, Buchkremer HP, Stöver D. Effects of deposition temperature and thermal cycling on residual stress state in zirconia-based thermal barrier coatings. Surf Coatings Technol. 1999;121:103–11. https://doi.org/10.1016/S0257-8972(99)00341-2.

    Article  Google Scholar 

  9. Yang YC, Chang E. Measurements of residual stresses in plasma-sprayed hydroxyapatite coatings on titanium alloy. Surf Coatings Technol. 2005;190:122–31. https://doi.org/10.1016/j.surfcoat.2004.02.038.

    Article  Google Scholar 

  10. Santana YY, Renault PO, Sebastiani M, La Barbera JG, Lesage J, Bemporad E. Characterization and residual stresses of WC – Co thermally sprayed coatings. Surf Coat Technol. 2008;202:4560–5. https://doi.org/10.1016/j.surfcoat.2008.04.042.

    Article  Google Scholar 

  11. Santana YY, La Barbera-Sosa JG, Staia MH, Lesage J, Puchi-Cabrera ES, Chicot D, Bemporad E. Measurement of residual stress in thermal spray coatings by the incremental hole drilling method. Surf Coatings Technol. 2006;201:2092–8. https://doi.org/10.1016/j.surfcoat.2006.04.056.

    Article  Google Scholar 

  12. Mauer G, Vaen R, Stöver D. Plasma and particle temperature measurements in thermal spray: approaches and applications. J Therm Spray Technol. 2011;20:391–406. https://doi.org/10.1007/s11666-010-9603-z.

    Article  Google Scholar 

  13. Abadias G, Chason E, Keckes J, Sebastiani M, Thompson GB, Barthel E, Doll GL, Murray CE, Stoessel CH, Martinu L. Review Article: Stress in thin films and coatings: Current status, challenges, and prospects. J Vac Sci Technol. 2018;36:020801. https://doi.org/10.1116/1.5011790.

    Article  Google Scholar 

  14. Hayase T, Waki H, Adachi K. residual stress change in thermal barrier coating due to thermal exposure evaluated by curvature method. J Therm Spray Technol. 2020. https://doi.org/10.1007/s11666-020-01032-7.

    Article  Google Scholar 

  15. Vijigen DJH. R O E Mechanical measurement of residual stress in thin PVD films. Thin Solid Films. 1995;270:264–9.

    Article  Google Scholar 

  16. Ahmed R, Faisal NH, Paradowska AM, Fitzpatrick ME. Residual strain and fracture response of Al 2O 3 coatings deposited via APS and HVOF techniques. J Therm Spray Technol. 2012;21:23–40. https://doi.org/10.1007/s11666-011-9680-7.

    Article  Google Scholar 

  17. Oladijo OP, Venter AM, Cornish LA, Sacks N. X-ray diffraction measurement of residual stress in WC-Co thermally sprayed coatings onto metal substrates. Surf Coatings Technol. 2012;206:4725–9. https://doi.org/10.1016/j.surfcoat.2012.01.044.

    Article  Google Scholar 

  18. Carlsson S, Larsson PL. On the determination of residual stress and strain fields by sharp indentation testing Part I: Theoretical and numerical analysis. Acta Mater. 2001;49:2179–91. https://doi.org/10.1016/S1359-6454(01)00122-7.

    Article  Google Scholar 

  19. Greying DJ, Rybicki EF, Shadley JR. Through-thickness residual stress evaluations for several industrial thermal spray coatings using a modified. J Therm Spray Technol. 1994;3:379–88.

    Article  Google Scholar 

  20. Mutter M, Mauer G, Mücke R, Guillon O, Vaßen R. Correlation of splat morphologies with porosity and residual stress in plasma-sprayed YSZ coatings. Surf Coatings Technol. 2017;318:157–69. https://doi.org/10.1016/j.surfcoat.2016.12.061.

    Article  Google Scholar 

  21. Montay G, Cherouat A, Nussair A, Lu J. Residual stresses in coating technology. J Mater Sci Technol. 2004;20:81–4.

    Google Scholar 

  22. Kesler O, Finot M. Determination of processing induced stresses and properties of layeres and graded coatings: experimental method and reuslts of plasma sprayed Ni-Al2O3. Acta Mater. 1997;45:5.

    Article  Google Scholar 

  23. Song Y, Fang QZ, Wang TJ. Experimental investigation of residual thermal stress in thermal barrier coating (TBC). Key Eng Mater. 2011;2:295–300.

    Article  Google Scholar 

  24. Ghasemi R, Shoja-Razavi R, Mozafarinia R, Jamali H. Comparison of microstructure and mechanical properties of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings. Ceram Int. 2013;39:8805–13. https://doi.org/10.1016/j.ceramint.2013.04.068.

    Article  Google Scholar 

  25. Thakare JG, Pandey C, Mulik RS, Mahapatra MM. Mechanical property evaluation of carbon nanotubes reinforced plasma sprayed YSZ-alumina composite coating. Ceram Int. 2018;44:6980–9. https://doi.org/10.1016/j.ceramint.2018.01.131.

    Article  Google Scholar 

  26. Taskaya S, Gur AK, Orhan A. Joining of Ramor 500 steel by submerged welding and its examination of thermal analysis in ansys package program. Therm Sci Eng Prog. 2019;11:84–110. https://doi.org/10.1016/j.tsep.2019.02.002.

    Article  Google Scholar 

  27. Taskaya S, Kaya Gur A, Ozay C. Joining of Ramor 500 Steel with SAW (Submerged Arc Welding) and its Evaluation of Thermomechanical Analysis in ANSYS Package Software. Therm Sci Eng Prog. 2019;13:100396. https://doi.org/10.1016/j.tsep.2019.100396.

    Article  Google Scholar 

  28. Taraphdar PK, Mahapatra MM, Pradhan AK, Singh PK, Sharma K, Kumar S. Evaluation of through-thickness residual stresses in conventional and narrow grooved stainless steel welds. Proc Inst Mech Eng Part L J Mater Des Appl. 2020. https://doi.org/10.1177/1464420720930355.

    Article  Google Scholar 

  29. Keshri AK, Agarwal A. Splat morphology of plasma sprayed aluminum oxide reinforced with carbon nanotubes: a comparison between experiments and simulation. Surf Coatings Technol. 2011;206:338–47. https://doi.org/10.1016/j.surfcoat.2011.07.025.

    Article  Google Scholar 

  30. Thakare JG, Mulik RS, Mahapatra MM. Effect of carbon nanotubes and aluminum oxide on the properties of a plasma sprayed thermal barrier coating. Ceram Int. 2018. https://doi.org/10.1016/j.ceramint.2017.09.196.

    Article  Google Scholar 

  31. Thakare JG, Mulik RS, Mahapatra MM. Hot corrosion behavior of plasma sprayed 8YSZ-alumina- CNT composite coating in Na2SO4–60% V2O5 molten salt environment. Ceram Int. 2018. https://doi.org/10.1016/j.ceramint.2018.08.217.

    Article  Google Scholar 

  32. Bose S. High Temperature Coatings. 2007. https://doi.org/10.1016/B978-0-7506-8252-7.X5000-8.

    Article  Google Scholar 

  33. Kuroda S. The quinching stress in thermal sprayed coating. 1991;200:2–3.

    Google Scholar 

  34. Hayashi H, Saitou T, Maruyama N, Inaba H, Kawamura K, Mori M. Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents. Solid State Ionics. 2005;176:613–9. https://doi.org/10.1016/j.ssi.2004.08.021.

    Article  Google Scholar 

  35. Yang K, Feng J, Zhou X, Tao S. In-situ formed γ-Al 2O 3 nanocrystals repaired and toughened Al 2O 3 coating prepared by plasma spraying. Surf Coatings Technol. 2012;206:3082–7. https://doi.org/10.1016/j.surfcoat.2011.12.014.

    Article  Google Scholar 

  36. Chen WR, Wu X, Marple BR, Nagy DR, Patnaik PC. TGO growth behaviour in TBCs with APS and HVOF bond coats. Surf Coatings Technol. 2008;202:2677–83. https://doi.org/10.1016/j.surfcoat.2007.09.042.

    Article  Google Scholar 

  37. Gadow R, Riegert-Escribano MJ, Buchmann M. Residual stress analysis in thermally sprayed layer composites, using the hole milling and drilling method. J Therm Spray Technol. 2005;14:100–8. https://doi.org/10.1361/10599630522756.

    Article  Google Scholar 

  38. Matejicek J, Sampath S, Gilmore D, Neiser R. In situ measurement of residual stresses and elastic moduli in thermal sprayed coatings part 2: processing effects on properties of Mo coatings. Acta Mater. 2003;51:873–85. https://doi.org/10.1016/S1359-6454(02)00477-9.

    Article  Google Scholar 

  39. Clyne TW, Gill SC. Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work. J Therm Spray Technol. 1996;5(4):401.

    Article  Google Scholar 

  40. Widjaja S, Limarga AM, Yip TH. Modeling of residual stresses in a plasma-sprayed zirconia/alumina functionally graded-thermal barrier coating. Thin Solid Films. 2003. https://doi.org/10.1016/S0040-6090(03)00427-9.

    Article  Google Scholar 

  41. Levit M, Grimberg I, Weiss BZ. Residual stresses in ceramic plasma-sprayed thermal barrier coatings: measurement and calculation. Mater Sci Eng A. 1996;206:30–8. https://doi.org/10.1016/0921-5093(95)09980-8.

    Article  Google Scholar 

  42. Bhattacharyya A, Maurice D. Residual stresses in functionally graded thermal barrier coatings. Mech Mater. 2018;129:50–6. https://doi.org/10.1016/j.mechmat.2018.11.002.

    Article  Google Scholar 

  43. Ojha S, Thakare JG, Giri A, Pandey C, Mahapatra MM, Mulik RS. Experimental and numerical investigation of residual stress in coatings on steel. J Test Eval. 2020;48:20180247. https://doi.org/10.1520/jte20180247.

    Article  Google Scholar 

  44. Peter Worth AW. Residual stress measurement and the slitting method. Newyork: Springer; 2007. https://doi.org/10.1007/978-0-387-39030-7.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JT, conducting of experiment, manuscript preparation; RM, analysis of results, manuscript evaluation; M, manuscript evaluation, FEM evaluation.

Corresponding authors

Correspondence to J. G. Thakare or R. S. Mulik.

Ethics declarations

Conflict of interest

The article is original work carried out by the authors. The article is neither submitted nor under consideration with any other journal, there is no conflict of interest between the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakare, J.G., Mulik, R.S. & Mahapatra, M.M. Estimation of residual stress in air plasma sprayed MWCNT-reinforced 8YSZ–alumina composite coating . Archiv.Civ.Mech.Eng 20, 100 (2020). https://doi.org/10.1007/s43452-020-00108-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00108-z

Keywords

Navigation