Skip to main content
Log in

Structure and dielectric properties of barium strontium titanate ferroelectric thin film prepared by DC micro-arc oxidation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Barium–strontium titanate (BST) ferroelectric thin film was fabricated on Ti substrates by micro-arc oxidation (MAO) in an aqueous solution consisting of 0.6 mol/L Ba(OH)2·8H2O and 0.4 mol/L Sr(OH)2·8H2O. The phase composition, elements distribution, dielectric and ferroelectric properties of the BST thin film were characterized. The results show that the BST film is mainly composed of BaxSr(1−x)TiO3 phase. The Ba, Sr, Ti and O elements are generally uniformly distributed across the film, and the local fluctuation of elements distribution may be caused by MAO holes in the membrane. The BST film is mainly deposited through an electrophoretic process. The dielectric constant of the BST thin film is about 283 measured at 1 kHz, and the film has ferroelectric property at room temperature because of the misfit strain in the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Ezhilvalavan, T. Tseung-Yuen, Progress in the developments of (Ba, Sr)TiO3(BST) thin films for Gigabit era DRAMs. Mater. Chem. Phys. 65(3), 227 (2000)

    Google Scholar 

  2. C. Liu, P. Liu, Microstructure and dielectric properties of BST ceramics derived from high-energy ball-milling. J. Alloys Compd. 584, 114 (2014)

    Google Scholar 

  3. S.-G. Yoon, J. Lee, A. Safari, Characterization of (Ba0.5Sr0.5)TiO3 thin films by the laser ablation technique and their electrical properties with different. Electrodes. Integr. Ferroelectr. 7, 329 (1995)

    Google Scholar 

  4. J.T. Evans, R. Womack, An experimental 512-bit nonvolatile memory with ferroelectric storage cell. IEEE J. Solid State Circuits 23(5), 1171 (1988)

    ADS  Google Scholar 

  5. R.R. Romanofsky, R.C. Toonen, Past, present and future of ferroelectric and multiferroic thin films for array antennas. Multidimens. Syst. Sign. Process. 29(2), 475 (2018)

    MATH  Google Scholar 

  6. O.G. Vendik, L.T. Ter-Martirosyan, S.P. Zubko, Microwave losses in incipient ferroelectrics as functions of the temperature and the biasing field. J. Appl. Phys. 84(2), 993 (1998)

    ADS  Google Scholar 

  7. L. Lai, Y. Xu, Y. Ren, H. Gao, X. Wang, J. Zhu, Y. He, X. Zhu, Low loss and highly tunable (Ba, Sr)(Ti, Mn)O3/(Ba, Sr)TiO3 bilayered films for electrically tunable microwave device applications. J. Mater. Sci. Mater. Electron. 28(8), 5718 (2017)

    Google Scholar 

  8. R.A. Owen, J.F. Belcher, H.R. Beratan, S.N. Frank, Producibility advances in hybrid uncooled infrared devices-II. Proc. SPIE. 2746, 101 (1996)

    ADS  Google Scholar 

  9. A. Noeth, T. Yamada, P. Muralt, A.K. Tagantsev, N. Setter, Tunable thin film bulk acoustic wave resonator based on BaxSr1xTiO3 thin film. IEEE Trans. Ultrason. Eng. 57(2), 379 (2010)

    Google Scholar 

  10. S. Gevorgian, A. Vorobiev, Impact of the electrodes on the tunability of paraelectric BST film based FBARs. The 40th EuMC. IEEE. 9, 1210 (2010)

  11. M. Gaidia, M. Chaker, P.F. Ndione, R. Morandotti, B. Bessaïs, Microstructural and optical properties of Ba0.5Sr0.5TiO3 thin film deposited by pulsed laser deposition for low loss waveguide applications. J. Appl. Phys. 101(6), 063107 (2007)

    ADS  Google Scholar 

  12. H. Wang, Y. Bian, J. Zhai, Orientation-dependent microwave dielectric properties of Ba0.6Sr0.4TiO3 thin films prepared by sol-gel method. J. Mater. Sci. Mater. Electron. 24(7), 2362 (2013)

    Google Scholar 

  13. Yu Yang, X. Wang, Xi Yao, Dielectric properties of Ba1xSrxTiO3 ceramics prepared by microwave sintering. Ceram. Int. 39, S335 (2013)

    Google Scholar 

  14. K. Rachut, T.J.M. Bayer, J.O. Wolff, B. Kmet, A. Benčan, A. Klein, Off-stoichiometry of magnetron sputtered Ba1xSrxTiO3 thin films. Phys. Status. Solidi. B 256(10), 1900148 (2019)

    ADS  Google Scholar 

  15. A.V. Tumarkin, S.V. Razumov, A. Gagarin, A. Oдинeц, A.K. Mikhailov, P. Igor, V.M. Stozharov, S.V. Senkevich, N.K. Travin, Ferroelectric films of barium strontium titanate on semi-insulating silicon carbide substrates. Tech. Phys. Lett. 42(4), 423 (2016)

    ADS  Google Scholar 

  16. N.A. Bakar, J. Adnan, R.A.M. Osman, Z.A.Z. Jamal, M.A. Idris, W.M.F.W. Nik, Sol gel preparation methods for barium strontium titanate based solar devices. Phys. Status. Solidi. 2068, 020057 (2019)

    Google Scholar 

  17. P. Ge, X. Tang, Q. Liu, Y. Jiang, W. Li, J. Luo, Energy storage properties and electrocaloric effect of Ba0.65Sr0.35TiO3 ceramics near room temperature. J. Mater. Sci. Mater. Electron. 29(2), 1075 (2018)

    Google Scholar 

  18. B. Vigneshwaran, P. Kuppusami, A. Panda, A. Singh, H. Sreemoolanadhan, Microstructure and optical properties of Ba0.6Sr0.4TiO3 thin films prepared by pulsed laser deposition. Mater. Res. Express 5(6), 066420 (2018)

    ADS  Google Scholar 

  19. J.P. Goud, M.S. Alkathy, K. Sandeep, S. Ramakanth, C.J. Raju, Influence of laser fluence on structural, optical and microwave dielectric properties of pulsed laser deposited Ba0.6Sr0.4TiO3 thin films. J. Mater. Sci. Mater. Electron. 29(18), 15973 (2018)

    Google Scholar 

  20. M. Reinke, Y. Kuzminykh, F. Eltes, S. Abel, T. LaGrange, A. Neels, J. Fompeyrine, P. Hoffmann, Low temperature epitaxial barium titanate thin film growth in high vacuum CVD. Adv. Mater. Interfaces 4(18), 1700116 (2017)

    Google Scholar 

  21. K. Yoshiizumi, T. Tai, M. Nishide, H. Shima, H. Funakubo, K. Nishida, T. Yamamoto, Growth and evaluation of epitaxial BaTiO3 thin films of less than 100 nm thickness by metal-organic chemical vapor deposition. Jpn. J. Appl. Phys. 54(3), 035501 (2015)

    ADS  Google Scholar 

  22. G. Shuster, O. Kreinin, E. Lakin, N.P. Kuzmina, MOCVD growth of barium-strontium titanate films using newly developed barium and strontium precursors. Thin Solid Films 518(16), 4658 (2010)

    ADS  Google Scholar 

  23. X. Shunhua, J. Weifen, L. Kun, X. JinHong, Z. Lin, Structure and ferroelectric properties of barium titanate films synthesized by sol–gel method. Mater. Chem. Phys. 127(3), 420 (2011)

    Google Scholar 

  24. D. Yan, L. Luo, Y. Zhang, Z. Peng, H. Liu, D. Xiao, T. Liu, X. Lai, J. Zhu, Influence of deposition temperature on microstructure and electrical properties of modified (Ba, Sr)TiO3 ferroelectric thin film. Ceram. Int. 41(8), S520 (2015)

    Google Scholar 

  25. M. Tezuka, M. Iwasaki, Plasma-induced degradation of aniline in aqueous solution. Thin Solid Films 386(2), 204 (2001)

    ADS  Google Scholar 

  26. Y.-K. Shin, W.-S. Chae, Y.-W. Song, Y.-M. Sung, Formation of titania photocatalyst films by microarc oxidation of Ti and Ti-6Al-4V alloys. Electrochem. Commun. 8(3), 465 (2006)

    Google Scholar 

  27. M.-H. Hong, D.-H. Lee, K.-M. Kim, Y.-K. Lee, Study on bioactivity and bonding strength between Ti alloy substrate and TiO2 film by micro-arc oxidation. Thin Solid Films 519(20), 7065 (2011)

    ADS  Google Scholar 

  28. S.V. Gnedenkov, P.S. Gordienko, O.A. Khrisanfova, T.M. Scorobogatova, S.L. Sinebrukhov, Formation of BaTiO3 coatings on titanium by microarc oxidation method. J. Mater. Sci. 37(11), 2263 (2002)

    ADS  Google Scholar 

  29. Wu Chutsun, Lu Fuhsing, Sythesis of barium titanate films by plasma electrolytic oxidation at room electolyte temperature. Surf. Coat. Technol. 199(2–3), 225 (2005)

    Google Scholar 

  30. W. Li, B. Han, Du Jun, J. Peng, Y. Gao, Structural characteristics of BaTiO3 films prepared by microarc oxidation. Trans. Nonferrous Met. Soc. China 16(5), 1041 (2006)

    Google Scholar 

  31. J. Peng, W. Li, B. Han, F. Huang, Du Jun, Synthesis of tetragonal BaTiO3 film on Ti substrate by micro-arc oxidation. Trans. Nonferrous Met. Soc. China 18(5), 1117 (2008)

    Google Scholar 

  32. W. Huang, W. Li, B. Han, Study on BaTiO3 films prepared by AC power microarc oxidation. Sci. China Ser. E 52, 2195 (2009)

    Google Scholar 

  33. W. Tsai, C. Yang, J. Zeng, Lu Fuhsing, Synthesis and characterization of barium titanate films on Ti-coated Si substrates by plasma electrolytic oxidation. Surf. Coat. Technol. 259, 297 (2014)

    Google Scholar 

  34. Y. Mao, J. Yan, L. Wang, W. Dong, Y. Jia, Hu Xin, X. Wang, Formation and properties of bioactive barium titanate coatings produced by plasma electrolytic oxidation. Ceram. Int. 44(11), 12978 (2018)

    Google Scholar 

  35. J. Zhaohua, Li Yanping, Li Wenxu, X. Shigang, Y. Jiuchun, Li Yimin, In-situ growth of barium strontium titanate (BST) ceramic film on titanium substrate. Rare Metal. Mat. Eng. 32(10), 859 (2003)

    Google Scholar 

  36. J. Schreckenbach, F. Schlottig, G. Marx, W.M. Kriven, O.O. Popoola, M.H. Jilavi, S.D. Brown, Preparation and microstructure characterization of anodic spark deposited barium titanate conversion layers. J. Mater. Res. 14(4), 1437 (1999)

    ADS  Google Scholar 

  37. A.L. Yerokhin, N. Xie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering. Surf. Coat. Technol. 122(2), 73 (1999)

    Google Scholar 

  38. W. Zhang, L. Chen, C. Jin, X. Deng, X. Wang, L. Li, High pressure Raman studies of dense nanocrystalline BaTiO3 ceramic. J. Electroceram. 21(21), 859 (2008)

    Google Scholar 

  39. H. Hayashi, T. Nakamura, T. Ebina, In-situ Raman spectroscopy of BaTiO3 particles for tetragonal-cubic transformation. J. Phys. Chem. Solids 74(7), 957 (2013)

    ADS  Google Scholar 

  40. C. Sittig, M. Textor, N.D. Spencer, M. Wieland, P.H. Vallotton, Surface characterization of implant materials cp Ti, Ti-6Al-7Nb and Ti-6A1–4V with different pretreatments. J. Mater. Sci: Mater. Med. 10(1), 35 (1999)

    Google Scholar 

  41. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering. Surf. Coat. Technol. 122(2), 73 (1999)

    Google Scholar 

  42. H.B. Sharma, Structure and properties of BT and BST thin films. Ferroelectrics 453(1), 113 (2013)

    Google Scholar 

  43. H.B. Sharma, S.B. Singh, Influence of space charge layers on the dielectric properties of Ba0.6Sr0.4TiO3 nanostructured thin films. Integr. Ferroelectr. 159(1), 14 (2015)

    Google Scholar 

  44. A.K. Jha, Effect of holmium substitution on electrical properties of strontium bismuth tantalate ferroelectric ceramics. Ceram. Int. 39(8), 9397 (2013)

    Google Scholar 

  45. H. Dong, J. Jian, H. Li, D. Jin, J. Chen, J. Cheng, Improved dielectric tunability of PZT/BST multilayer thin films on Ti substrates. J. Alloy. Compd. 725, 54 (2017)

    Google Scholar 

  46. N.D. Patel, M.H. Mangrola, K.G. Soni, V.G. Joshi, Structural and electrical properties of nanocrystalline barium strontium titanate. Mater. Today: Proc. 4(2), 3842 (2017)

    Google Scholar 

  47. H. Chen, C. Yang, C. Fu, L. Zhao, Z. Gao, The size effect of Ba0.6Sr0.4TiO3 thin films on the ferroelectric properties. Appl. Surf. Sci. 252(12), 4171 (2006)

    ADS  Google Scholar 

  48. V. Eswaramoorthi, R.V. Williams, Effect of thickness on microstructure, dielectric and optical properties of single layer Ba0.6Sr0.4TiO3 thin film. Surf. Rev. Lett. 21(2), 450020 (2014)

    Google Scholar 

  49. W. Chen, X. Yao, X. Wei, Structural and dielectric properties of Bi doped Ba0.6Sr0.4TiO3 ceramics. J. Mater. Sci. 43(3), 1144 (2008)

    ADS  Google Scholar 

  50. S. Kooriyattil, S.P. Pavunny, A.A. Instan, R.S. Katiyar, The thermalstability of voltage tunability in pulsed laser deposited Ba0.6Sr0.4TiO3 thin films. Integr. Ferroelectr. 166(1), 140 (2015)

    Google Scholar 

  51. Z. Ji, Z. He, Y. Song, K. Liu, Z. Ye, Fabrication and characterization of indium-doped p-type SnO2 thin films. J. Cryst. Growth 259(3), 282 (2003)

    ADS  Google Scholar 

  52. M.S. Tsai, S.C. Sun, T.Y. Tseng, Effect of oxygen to argon ratio on properties of (Ba, Sr)TiO3 thin films prepared by radio-frequency magnetron sputtering. J. Appl. Phys. 82(7), 3482 (1997)

    ADS  Google Scholar 

  53. M. Shen, Z. Dong, Z. Gan, S. Ge, Oxygen-related dielectric relaxation and leakage characteristics of Pt/(Ba, Sr)TiO3/Pt thin-film capacitors. Appl. Phys. Lett. 80(14), 2538 (2002)

    ADS  Google Scholar 

  54. S. Ezhilvalavan, T. Tseung-Yuen, Progress in the developments of (Ba, Sr)TiO3 (BST) thin films for Gigabit era DRAMs. Mater. Chem. Phys. 65(3), 227 (2000)

    Google Scholar 

  55. J.X. Liao, C.R. Yang, Z. Tian, H.G. Yang, L. Jin, The influence of post-annealing on the chemical structures and dielectric properties of the surface layer of Ba0.6Sr0.4TiO3 films. J. Phys. D Appl. Phys. 39(11), 2473 (2006)

    ADS  Google Scholar 

  56. Z. Saroukhani, N. Tahmasebi, S.M. Mahdavi, A. Nemati, Effect of working pressure and annealing temperature on microstructure and surface chemical composition of barium strontium titanate films grown by pulsed laser deposition. Bull. Mater. Sci. 38(6), 1645 (2015)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Science and Technology Planning Project of Guangdong Province (2020A1414050064 and 2016A010103040) and the Educational Commission of Guangdong Province (2018KTSCX124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, W., Zuo, X. et al. Structure and dielectric properties of barium strontium titanate ferroelectric thin film prepared by DC micro-arc oxidation. Appl. Phys. A 126, 760 (2020). https://doi.org/10.1007/s00339-020-03937-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03937-0

Keywords

Navigation