Skip to main content
Log in

Anisotropic metasurface with high-efficiency reflection and transmission for dual-polarization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recently, accelerating advances in coding metasurfaces linking metamaterial and digital codes have enabled unexampled route for electromagnetic (EM) waves manipulation, including perfect reflection and transmission. In this paper, an anisotropic coding metasurface with a semi-discontinuous metallic ground sheet are proposed, which realizes dual independent functionalities by changing the polarization of incident waves. The ultrathin metasurface is composed of eight coding elements based on a simple rectangle metal patch and the reflective phases of these elements fully cover 360°. Both numerical and measured results show that our design is able to near-perfectly reflect the normally incident y-polarized wave to desired reflection angle and transmit the y-polarized plane wave with high efficiency. In addition, considering the simple structure, easy fabrication process and decent control ability on EM waves, the proposed coding metasurface may be exploited for more complex functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)

    Article  ADS  Google Scholar 

  2. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001)

    Article  ADS  Google Scholar 

  3. H. Shen et al., Anomalously weak scattering in metal-semiconductor multilayer hyperbolic metamaterials. Phys. Rev. X 5(2), 021021 (2015). https://doi.org/10.1103/PhysRevX.5.021021

    Article  Google Scholar 

  4. G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang, Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10(4), 308–312 (2015). https://doi.org/10.1038/nnano.2015.2

    Article  ADS  Google Scholar 

  5. M. Manjappa, P. Pitchappa, N. Wang, C. Lee, R. Singh, Active control of resonant cloaking in a terahertz MEMS metamaterial. Adv. Opt. Mater. 6, 16 (2018). https://doi.org/10.1002/adom.201800141

    Article  Google Scholar 

  6. Q. Ma, Z.L. Mei, S.K. Zhu, T.Y. Jin, T.J. Cui, Experiments on active cloaking and illusion for laplace equation. Phys. Rev. Lett. 111(17), 173901 (2013)

    Article  ADS  Google Scholar 

  7. Q. Ma, G.D. Bai, H.B. Jing, C. Yang, L. Li, T.J. Cui, Smart metasurface with self-adaptively reprogrammable functions. Light Sci. Appl. 8(1), 1–12 (2019)

    Article  Google Scholar 

  8. L. Chen, H.L. Ma, X.J. Song, Y. Ruan, H.Y. Cui, Dual-functional tunable coding metasurface based on saline water substrate. Sci. Rep. 8(1), 2070 (2018). https://doi.org/10.1038/s41598-018-20532-9

    Article  ADS  Google Scholar 

  9. Q. Ma et al., Controllable and programmable nonreciprocity based on detachable digital coding metasurface. Adv. Opt. Mater. 7, 1901285 (2019)

    Article  Google Scholar 

  10. L. Chen, Q. Ma, H.B. Jing, H.Y. Cui, Y. Liu, T.J. Cui, Space-energy digital-coding metasurface based on an active amplifier. Phys. Rev. Appl. 11(5), 6 (2019). https://doi.org/10.1103/PhysRevApplied.11.054051. (in English)

    Article  Google Scholar 

  11. L. Chen, Y. Ruan, H.Y. Cui, Liquid metal metasurface for flexible beam-steering. Opt. Express 27(16), 23282–23292 (2019). https://doi.org/10.1364/OE.27.023282

    Article  ADS  Google Scholar 

  12. Y. Ruan, Q.F. Nie, L. Chen, H.Y. Cui, Optical transparent and reconfigurable metasurface with autonomous energy supply. J. Phys. D Appl. Phys. 53(6), 065301 (2019)

    Article  ADS  Google Scholar 

  13. A. Arbabi, Y. Horie, M. Bagheri, A. Faraon, Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10(11), 937–943 (2015). https://doi.org/10.1038/nnano.2015.186

    Article  ADS  Google Scholar 

  14. T.J. Cui, M.Q. Qi, X. Wan, J. Zhao, Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3(10), e218 (2014). https://doi.org/10.1038/lsa.2014.99

    Article  ADS  Google Scholar 

  15. S. Liu et al., Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies. Adv. Opt. Mater. 4(12), 1965–1973 (2016). https://doi.org/10.1002/adom.201600471. (in English)

    Article  ADS  Google Scholar 

  16. S. Liu et al., Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci. Appl. 5(5), e16076 (2016). https://doi.org/10.1038/lsa.2016.76

    Article  Google Scholar 

  17. L. Liang et al., Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials. Adv. Opt. Mater. 3(10), 1374–1380 (2015). https://doi.org/10.1002/adom.201500206

    Article  Google Scholar 

  18. Q. Ma, C.B. Shi, G.D. Bai, T.Y. Chen, A. Noor, T.J. Cui, Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit. Adv. Opt. Mater. 5(23), 1700548 (2017). https://doi.org/10.1002/adom.201700548

    Article  Google Scholar 

  19. L. Zhang, S. Liu, L. Li, T.J. Cui, Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces. ACS Appl. Mater. Interface 9(41), 36447–36455 (2017). https://doi.org/10.1021/acsami.7b12468

    Article  Google Scholar 

  20. L. Li et al., Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8(1), 197 (2017). https://doi.org/10.1038/s41467-017-00164-9

    Article  ADS  Google Scholar 

  21. A.L. Kitt, J.P. Rolland, A.N. Vamivakas, Visible metasurfaces and ruled diffraction gratings: a comparison. Opt. Mater. Express (2015). https://doi.org/10.1364/ome.5.002895

    Article  Google Scholar 

  22. N. Yu et al., Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333–337 (2011)

    Article  ADS  Google Scholar 

  23. A.M.H. Wong, P. Christian, G.V. Eleftheriades, Binary Huygens’ metasurfaces: experimental demonstration of simple and efficient near-grazing retroreflectors for TE and TM polarizations. IEEE Trans. Antennas Propag. 66(6), 2892–2903 (2018). https://doi.org/10.1109/tap.2018.2816792

    Article  ADS  Google Scholar 

  24. A. Díaz-Rubio, V.S. Asadchy, A. Elsakka, S.A. Tretyakov, From the generalized reflection law to the realization of perfect anomalous reflectors. Sci. Adv. 3(8), e1602714 (2017)

    Article  ADS  Google Scholar 

  25. V.S. Asadchy et al., Flat engineered multichannel reflectors. Phys. Rev. X (2017). https://doi.org/10.1103/PhysRevX.7.031046

    Article  Google Scholar 

  26. O. Rabinovich, A. Epstein, Analytical design of printed circuit board (PCB) metagratings for perfect anomalous reflection. IEEE Trans. Antennas Propag. 66(8), 4086–4095 (2018). https://doi.org/10.1109/tap.2018.2836379

    Article  ADS  Google Scholar 

  27. V.S. Asadchy, A. Wickberg, A. Diaz-Rubio, M.J.A.P. Wegener, Eliminating scattering loss in anomalously reflecting optical metasurfaces. ACS Photon. 4(5), 1264–1270 (2017)

    Article  Google Scholar 

  28. A. Díaz-Rubio, S.A. Tretyakov, Acoustic metasurfaces for scattering-free anomalous reflection and refraction. Phys. Rev. B (2017). https://doi.org/10.1103/PhysRevB.96.125409

    Article  Google Scholar 

  29. A. Epstein, G.V. Eleftheriades, Synthesis of passive lossless metasurfaces using auxiliary fields for reflectionless beam splitting and perfect reflection. Phys. Rev. Lett. 117(25), 256103 (2016). https://doi.org/10.1103/PhysRevLett.117.256103

    Article  ADS  Google Scholar 

  30. A.M.H. Wong, G.V. Eleftheriades, Perfect anomalous reflection with a bipartite Huygens’ metasurface. Phys. Rev. X (2018). https://doi.org/10.1103/PhysRevX.8.011036

    Article  Google Scholar 

  31. V.S. Asadchy, M. Albooyeh, S.N. Tcvetkova, A. Díaz-Rubio, Y. Ra'di, S.A. Tretyakov, Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys. Rev. B (2016). https://doi.org/10.1103/PhysRevB.94.075142

    Article  Google Scholar 

  32. Y. Huang, H. Xu, Y. Lu, Y. Chen, All-dielectric metasurface for achieving perfect reflection at visible wavelengths. J. Phys. Chem. C 122(5), 2990–2996 (2018). https://doi.org/10.1021/acs.jpcc.7b10417

    Article  Google Scholar 

  33. Q. Ma, Q.R. Hong, G.D. Bai, H.B. Jing, R.Y. Wu, L. Bao, Q. Cheng, T.J. Cui, Phys. Rev. Appl. 13, 021003 (2020)

    Article  ADS  Google Scholar 

  34. T. Zhan, J. Xiong, J. Zou, S.-T. Wu, PhotoniX 1, 10 (2020)

    Article  Google Scholar 

  35. Q. Ma, T.J. Cui, PhotoniX 1, 1–32 (2020)

    Article  Google Scholar 

  36. H.B. Jing, Q. Ma, G.D. Bai, T.J. Cui, Anomalously Perfect Reflections Based on 3-Bit Coding Metasurfaces. Adv. Opt. Mater. 7(9), 1801742 (2019). https://doi.org/10.1002/adom.201801742

    Article  Google Scholar 

  37. K.K. Yan, Y.L. Lu, IEEE Trans. Antennas Propag. 45, 1117–1122 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.11404207), SHIEP Foundation K2014-054 and Z2015-086, the Local Colleges and Universities Capacity Building Program of the Shanghai Science and Technology Committee, China (Grant Nos. 15110500900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Yang Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Nie, Q.F., Ruan, Y. et al. Anisotropic metasurface with high-efficiency reflection and transmission for dual-polarization. Appl. Phys. A 126, 758 (2020). https://doi.org/10.1007/s00339-020-03944-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03944-1

Keywords

Navigation