Skip to main content
Log in

A deep-red emission fluorescent probe with long wavelength absorption for viscosity detection and live cell imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Intracellular viscosity is closely related to a series of biological processes and could be a biomarker for various diseases. Herein, we reported a deep-red emission viscosity probe ACI, which showed a turn-on fluorescence effect with excellent selectivity encountering high viscous medium. To assure the practical biological application, ACI demonstrated not only a long wavelength emission at 634 nm but also a long wavelength excitation at 566 nm, which were crucial to afford deeper penetration depth and higher sensitivity in bioimaging. The photophysical properties and viscosity recognition mechanism of the probe were carefully discussed here. Theoretical calculations furtherly confirmed that high viscous medium could inhibit the twisted intramolecular charge transfer (TICT) process of the probe which quenched the fluorescence in low viscous media, and restore the emission. More importantly, it was successfully applied to visualize the viscosity in living cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang Z, He Y, Lee JH, Park N, Suh M, Chae WS, et al. A self-calibrating bipartite viscosity sensor for mitochondria. J Am Chem Soc. 2013;135(24):9181–5.

    CAS  PubMed  Google Scholar 

  2. Chen B, Li C, Zhang J, Kan J, Jiang T, Zhou J, et al. Sensing and imaging of mitochondrial viscosity in living cells using a red fluorescent probe with a long lifetime. Chem Commun. 2019;55(51):7410–3.

    CAS  Google Scholar 

  3. Zhu H, Fan J, Li M, Cao J, Wang J, Peng X. A "distorted-BODIPY"-based fluorescent probe for imaging of cellular viscosity in live cells. Chem Eur J. 2014;20(16):4691–6.

    CAS  PubMed  Google Scholar 

  4. Ow YP, Green DR, Hao Z, Mak TW. Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol. 2008;9(7):532–42.

    CAS  PubMed  Google Scholar 

  5. Chen W, Gao C, Liu X, Liu F, Wang F, Tang LJ, et al. Engineering organelle-specific molecular viscosimeters using aggregation-induced emission luminogens for live cell imaging. Anal Chem. 2018;90(15):8736–41.

    CAS  PubMed  Google Scholar 

  6. Chen T, Chen Z, Liu R, Zheng S. A NIR fluorescent probe for detection of viscosity and lysosome imaging in live cells. Org Biomol Chem. 2019;17(26):6398–403.

    CAS  PubMed  Google Scholar 

  7. Gao S, Ma Y, Lin W. A deep-red emission fluorescent probe for detection of viscosity in living cells and mice. Anal Methods. 2019;11(20):2626–9.

    CAS  Google Scholar 

  8. Li X, Gao X, Shi W, Ma H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev. 2014;114(1):590–659.

    CAS  PubMed  Google Scholar 

  9. Kim HM, Cho BR. Small-molecule two-photon probes for bioimaging applications. Chem Rev. 2015;115(11):5014–55.

    CAS  PubMed  Google Scholar 

  10. Chen D, Yang J, Dai J, Lou X, Zhong C, Yu X, et al. A low background D–A–D type fluorescent probe for imaging of biothiols in living cells. J Mater Chem B. 2018;6(32):5248–55.

    CAS  PubMed  Google Scholar 

  11. Chen D, Long Z, Dang Y, Chen L. A novel fluorescent probe with red emission and a large Stokes shift for selective imaging of endogenous cysteine in living cells. Analyst. 2018;143(23):5779–84.

    CAS  PubMed  Google Scholar 

  12. Jin Y, Tian X, Jin L, Cui Y, Liu T, Yu Z, et al. Highly specific near-infrared fluorescent probe for the real-time detection of beta-glucuronidase in various living cells and animals. Anal Chem. 2018;90(5):3276–83.

    CAS  PubMed  Google Scholar 

  13. Long Z, Chen L, Dang Y, Chen D, Lou X, Xia F. An ultralow concentration of two-photon fluorescent probe for rapid and selective detection of lysosomal cysteine in living cells. Talanta. 2019;204:762–8.

    CAS  PubMed  Google Scholar 

  14. Zhang P, Wang H, Hong Y, Yu M, Zeng R, Long Y, et al. Selective visualization of endogenous hypochlorous acid in zebrafish during lipopolysaccharide-induced acute liver injury using a polymer micelles-based ratiometric fluorescent probe. Biosens Bioelectron. 2018;99:318–24.

    CAS  PubMed  Google Scholar 

  15. Zhang P, Wang H, Zhang D, Zeng X, Zeng R, Xiao L, et al. Two-photon fluorescent probe for lysosome-targetable hypochlorous acid detection within living cells. Sensors Actuators B Chem. 2018;255:2223–31.

    CAS  Google Scholar 

  16. Liu F, Wu T, Cao J, Cui S, Yang Z, Qiang X, et al. Ratiometric detection of viscosity using a two-photon fluorescent sensor. Chem Eur J. 2013;19(5):1548–53.

    CAS  PubMed  Google Scholar 

  17. Panettieri S, Silverman JR, Nifosi R, Signore G, Bizzarri R, John G. Unique photophysical behavior of coumarin-based viscosity probes during molecular self-assembly. Acs Omega. 2019;4(3):4785–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dai X, Dong B, Ren M, Lin W. Unique D–π–A–π–D type fluorescent probes for the two-photon imaging of intracellular viscosity. J Mater Chem B. 2018;6(3):381–5.

    CAS  PubMed  Google Scholar 

  19. Cao X, Liu J, Hong P, Li G, Hao C. Styrylcyanine-based fluorescent probes with red-emission and large Stokes shift for the detection of viscosity. J Photochem Photobiol A Chem. 2017;346:444–51.

    CAS  Google Scholar 

  20. Suhling K. Twist and probe-fluorescent molecular rotors image Escherichia coli cell membrane viscosity. Biophys J. 2016;111(7):1337–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Su D, Teoh CL, Gao N, Xu QH, Chang YT. A simple BODIPY-based viscosity probe for imaging of cellular viscosity in live cells. Sensors. 2016;16(9):1397.

    PubMed Central  Google Scholar 

  22. Peng M, Yin J, Lin W. A two-photon fluorescent probe for detecting lipid droplet viscosity in living cells and zebra fish. New J Chem. 2018;42(23):18521–5.

    CAS  Google Scholar 

  23. Sun W, Cui J-X, Ma L-L, Lu Z-L, Gong B, He L, et al. Imaging nucleus viscosity and G-quadruplex DNA in living cells using a nucleus-targeting two-photon fluorescent probe. Analyst. 2018;143(23):5799–804.

    CAS  PubMed  Google Scholar 

  24. Sun W, Shi Y-D, Ding A-X, Tan Z-L, Chen H, Liu R, et al. Imaging viscosity and peroxynitrite by a mitochondria-targeting two-photon ratiometric fluorescent probe. Sensors Actuators B Chem. 2018;276:238–46.

    CAS  Google Scholar 

  25. Yin J, Peng M, Lin W. Visualization of mitochondrial viscosity in inflammation, fatty liver, and cancer living mice by a robust fluorescent probe. Anal Chem. 2019;91(13):8415–21.

    CAS  PubMed  Google Scholar 

  26. Li X, Zhao R, Wang Y, Huang C. A new GFP fluorophore-based probe for lysosome labelling and tracing lysosomal viscosity in live cells. J Mater Chem B. 2018;6(41):6592–8.

    CAS  PubMed  Google Scholar 

  27. Li LL, Li K, Li MY, Shi L, Liu YH, Zhang H, et al. BODIPY-based two-photon fluorescent probe for real-time monitoring of lysosomal viscosity with fluorescence lifetime imaging microscopy. Anal Chem. 2018;90(9):5873–8.

  28. Jiang N, Fan J, Zhang S, Wu T, Wang J, Gao P, et al. Dual mode monitoring probe for mitochondrial viscosity in single cell. Sensors Actuators B Chem. 2014;190:685–93.

    CAS  Google Scholar 

  29. Guo R, Yin J, Ma Y, Li G, Wang Q, Lin W. A novel NIR probe for detection of viscosity in cellular lipid droplets, zebra fishes and living mice. Sensors Actuators B Chem. 2018;271:321–8.

    CAS  Google Scholar 

  30. Gadda G, Sobrado P. Kinetic solvent viscosity effects as probes for studying the mechanisms of enzyme action. Biochemistry. 2018;57(25):3445–53.

    CAS  PubMed  Google Scholar 

  31. Xochitiotzi-Flores E, Jiménez-Sánchez A, García-Ortega H, Sánchez-Puig N, Romero-Ávila M, Santillan R, et al. Optical properties of two fluorene derived BODIPY molecular rotors as fluorescent ratiometric viscosity probes. New J Chem. 2016;40(5):4500–12.

    CAS  Google Scholar 

  32. Baek Y, Park SJ, Zhou X, Kim G, Kim HM, Yoon J. A viscosity sensitive fluorescent dye for real-time monitoring of mitochondria transport in neurons. Biosens Bioelectron. 2016;86:885–91.

    CAS  PubMed  Google Scholar 

  33. Li SJ, Li YF, Liu HW, Zhou DY, Jiang WL, Ou-Yang J, et al. A dual-response fluorescent probe for the detection of viscosity and H2S and its application in studying their cross-talk influence in mitochondria. Anal Chem. 2018;90(15):9418–25.

    CAS  PubMed  Google Scholar 

  34. Tan H-y, Y-t Q, Sun H, J-w Y, Zhang L. A lysosome-targeting dual-functional fluorescent probe for imaging intracellular viscosity and beta-amyloid. Chem Commun. 2019;55(18):2688–91.

    CAS  Google Scholar 

  35. Wang H, Fang B, Xiao L, Li D, Zhou L, Kong L, et al. A water-soluble “turn-on” fluorescent probe for specifically imaging mitochondria viscosity in living cells. Spectrochim Acta Part A. 2018;203:127–31.

    CAS  Google Scholar 

  36. Wu Y, Shu W, Zeng C, Guo B, Shi J, Jing J, et al. A mitochondria targetable and viscosity sensitive fluorescent probe and its applications for distinguishing cancerous cells. Dyes Pigments. 2019;168:134–9.

    CAS  Google Scholar 

  37. Zhang G, Ni Y, Zhang D, Li H, Wang N, Yu C, et al. Rational design of NIR fluorescence probes for sensitive detection of viscosity in living cells. Spectrochim Acta A. 2019;214:339–47.

    CAS  Google Scholar 

  38. Zhang Y, Li Z, Hu W, Liu Z. A mitochondrial-targeting near-infrared fluorescent probe for visualizing and monitoring viscosity in live cells and tissues. Anal Chem. 2019;91(15):10302–9.

    CAS  PubMed  Google Scholar 

  39. Ma Y, Zhao Y, Guo R, Zhu L, Lin W. A near-infrared emission fluorescent probe with multi-rotatable moieties for highly sensitive detection of mitochondrial viscosity in an inflammatory cell model. J Mater Chem B. 2018;6(39):6212–6.

    CAS  PubMed  Google Scholar 

  40. Zhou X, Lv X, Hao J, Liu D, Guo W. Coumarin–indanedione conjugate as a doubly activated Michael addition type probe for the colorimetric and ratiometric fluorescent detection of cyanide. Dyes Pigments. 2012;95(2):168–73.

    CAS  Google Scholar 

  41. Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011;32(7):1456–65.

    CAS  PubMed  Google Scholar 

  42. Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33(5):580–92.

    PubMed  Google Scholar 

  43. Jiang X, Yu Y, Chen J, Zhao M, Chen H, Song X, et al. Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe. ACS Chem Biol. 2015;10(3):864–74.

    CAS  PubMed  Google Scholar 

  44. Kim WY, Shi H, Jung HS, Cho D, Verwilst P, Lee JY, et al. Coumarin-decorated Schiff base hydrolysis as an efficient driving force for the fluorescence detection of water in organic solvents. Chem Commun. 2016;52(56):8675–8.

    CAS  Google Scholar 

  45. Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun. 2001;18:1740–1.

    Google Scholar 

Download references

Acknowledgments

The DFT calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University. The authors would like to thank Shiyanjia Lab (www.shiyanjia.com) for the support of cell imaging.

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 51703171, 51873160), and Science Foundation of Wuhan Institute of Technology (No. K201754).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Zhong or Dugang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 776 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Feng, Y., Dang, Y. et al. A deep-red emission fluorescent probe with long wavelength absorption for viscosity detection and live cell imaging. Anal Bioanal Chem 412, 7819–7826 (2020). https://doi.org/10.1007/s00216-020-02911-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02911-2

Keywords

Navigation