Skip to main content
Log in

Learning Causal Effect Using Machine Learning with Application to China’s Typhoon

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

Matching is a routinely used technique to balance covariates and thereby alleviate confounding bias in causal inference with observational data. Most of the matching literatures involve the estimating of propensity score with parametric model, which heavily depends on the model specification. In this paper, we employ machine learning and matching techniques to learn the average causal effect. By comparing a variety of machine learning methods in terms of propensity score under extensive scenarios, we find that the ensemble methods, especially generalized random forests, perform favorably with others. We apply all the methods to the data of tropical storms that occurred on the mainland of China since 1949.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadie, A., Imbens, G.W. Large sample properties of matching estimators for average treatment effects. Econometrica, 74(1): 235–267 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Abadie, A., Imbens, G.W. Bias-corrected matching estimators for average treatment effects. Journal of Business Economic Statistics, 29(1): 1–11 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Abadie, A., Imbens, G.W. Matching on the estimated propensity score. Econometrica, 84(2): 781–807 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Athey, S., Imbens, G.W. Recursive partitioning for heterogeneous causal effects. Proceedings of the National Academy of Sciences of the United States of America, 113(27): 7353–7360 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Athey, S., Tibshirani, J., Wager, S. Generalized random forests. The Annals of Statistics, 47(2): 1148–1178 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Breiman, L. Random Forests. Machine Learning, 45(1): 5–32 (2001)

    MATH  Google Scholar 

  7. Breiman, L. Statistical modeling: The two cultures. Statistical Science, 16(3): 199–215 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Cochran, W.G. The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics, 24(2): 295–313 (1968)

    MathSciNet  Google Scholar 

  9. Cochran, W.G., Rubin, D.B. Controlling bias in observational studies: a review. The Indian Journal of Statistics, Series A, 35(4): 417–446 (1973)

    MATH  Google Scholar 

  10. Drake, C. Effects of misspecification of the propensity score on estimators of treatment effect. Biometrics, 49(4): 1231–1236 (1993)

    Google Scholar 

  11. Efron, B., Hastie, T. Computer age statistical inference: algorithms, evidence, and data science. Cambridge University Press, Cambridge, 2016

    MATH  Google Scholar 

  12. Freund, Y., Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1): 119–139 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Friedman, J., Hastie, T., Tibshirani, R. Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 28(2): 337–407 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Friedman, J.H. Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5): 1189–1232 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Friedman, J., Hastie, T., Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1): 1–22 (2010)

    Google Scholar 

  16. Fu, S., Zhang, S., Liu, Y. A new tree-based non-crossing probability estimation for weighted classifiers. forthcoming (2018)

  17. Gu, X.S., Rosenbaum, P.R. Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4): 405–420 (1993)

    Google Scholar 

  18. Hastie, T., Tibshirani, R., Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, second edition. Springer, New York, 2009

    MATH  Google Scholar 

  19. Hirano, K., Imbens, G.W., Ridder, G. Efficient estimation of average treatment effects using the estimated propensity score. Econometrica, 71(4): 1161–1189 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Imbens, G.W., Rubin, D.B. Causal Inference For Statistics Social and Biomedical Science. Cambridge University Press, New York, 2015

    MATH  Google Scholar 

  21. Lee, B.K., Lessler, J., Stuart, E.A. Improved propensity score weighting using machine learning. Statistics in Medicine, 29(3): 337–346 (2010)

    MathSciNet  Google Scholar 

  22. Mccaffrey, D.F., Ridgeway, G., Morral, A.R. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods, 9(4): 403–425 (2004)

    Google Scholar 

  23. Rosenbaum, P.R., Rubin, D.B. The central role of the propensity score in observational studies for causal. Biometric, 70(1): 41–55 (1983)

    MathSciNet  MATH  Google Scholar 

  24. Rosenbaum, P.R., Rubin, D.B. Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association, 79(387): 516–524 (1984)

    Google Scholar 

  25. Rosenbaum, P.R., Rubin, D.B. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician, 39(1): 33–38 (1985)

    Google Scholar 

  26. Rosenbaum, P.R. Observational Studies. Springer, New York, 2002

    MATH  Google Scholar 

  27. Rosenbaum, P.R., Ross, R.N., Silber, J.H. Minimum distance matched sampling with fine balance in an observational study of treatment for ovarian cancer. Journal of the American Statistical Association, 102(477): 75–83 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Rosenbaum, P.R. Design of Observational Studies. Springer, New York, 2010

    MATH  Google Scholar 

  29. Rubin, D.B. Matching to remove bias in observational studies. Biometrics, 29(1): 159–183 (1973)

    Google Scholar 

  30. Rubin, D.B. The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics, 29(1): 185–203 (1973)

    Google Scholar 

  31. Rubin, D.B. Bias reduction using mahalanobis-metric matching. Biometrics, 36(2): 293–298 (1980)

    MATH  Google Scholar 

  32. Rubin D.B. Using propensity scores to help design observational studies: Application to the tobacco litigation. Health Services and Outcomes Research Methodology, 2(3–4): 169–188 (2001)

    Google Scholar 

  33. Rubin D.B., Thomas N. Characterizing the effect of matching using linear propensity score methods with normal distributions. Biometrika, 79(4): 797–809 (1992)

    MathSciNet  MATH  Google Scholar 

  34. Rubin, D.B., Thomas, N. Matching using estimated propensity scores: Relating theory to practice. Biometrics, 52(1): 249–264 (1996)

    MATH  Google Scholar 

  35. Rubin, D.B., Thomas, N. Combining propensity score matching with additional adjustments for prognostic covariates. Journal of American Statistical Association, 95(450): 573–55 (2000).

    Google Scholar 

  36. Schapire, R.E., Freund, Y. Boosting: Foundations and Algorithms. The MIT Press, London, 2012

    MATH  Google Scholar 

  37. Setoguchi, S., Schneeweiss, S., Brookhart, M.A., Glynn, R.J. Evaluating uses of data mining techniques in propensity score estimation: a simulation study. Pharmacoepidemiology and Drug Safety, 17(6): 546–555 (2008)

    Google Scholar 

  38. Stuart, E.A. Matching methods for causal inference: a review and a look forward. Statistical Science, 25(1): 1–21 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Wager, S., Athey, S. Estimation and inference of heterogeneous treatment effects using random forests. Journal of American Statistical Association, 113(523): 1228–1242 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Wang, J., Shen, X., Liu, Y. Probability estimation for large-margin classifiers. Biometrika, 95(1): 166–177 (2007)

    MathSciNet  Google Scholar 

  41. Zhang, C., Liu, Y., Wu, Z. On the effect and remedies of shrinkage on classification probability estimation. The American Statistician, 67(3): 134–142 (2013)

    MathSciNet  Google Scholar 

  42. Zhao Z. Using using matching to estimate treatment effects: Data requirements, matching metrics, and monte carlo evidence. The Review of Economics and Statistics, 86(1): 91–107 (2004)

    Google Scholar 

  43. Zhou, Z.H. Ensemble Methods: Foundations and Algorithms. Chapman Hall/CRC Press, Cambridge, 2012

    Google Scholar 

  44. Zhu, J., Hastie, T. Kernel logistic regression and the import vector machine. International Conference on Neural Information Processing Systems: Natural Synthetic, 2001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-wei Tong.

Additional information

This paper is supported by the National Key Research and Development Program of China Grant 2017Y-FA0604903 and National Natural Science Foundation of China Grant (Nos. 11671338, 11971064).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, P., Hu, Qr., Tong, Xw. et al. Learning Causal Effect Using Machine Learning with Application to China’s Typhoon. Acta Math. Appl. Sin. Engl. Ser. 36, 702–713 (2020). https://doi.org/10.1007/s10255-020-0960-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-020-0960-1

Keywords

2000 MR Subject Classification

Navigation