Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Using sulfuramidimidoyl fluorides that undergo sulfur(vi) fluoride exchange for inverse drug discovery

Abstract

Drug candidates that form covalent linkages with their target proteins have been underexplored compared with the conventional counterparts that modulate biological function by reversibly binding to proteins, in part due to concerns about off-target reactivity. However, toxicity linked to off-target reactivity can be minimized by using latent electrophiles that only become activated towards covalent bond formation on binding a specific protein. Here we study sulfuramidimidoyl fluorides, a class of weak electrophiles that undergo sulfur(vi) fluoride exchange chemistry. We show that equilibrium binding of a sulfuramidimidoyl fluoride to a protein can allow nucleophilic attack by a specific amino acid side chain, which leads to conjugate formation. We incubated small molecules, each bearing a sulfuramidimidoyl fluoride electrophile, with human cell lysate, and the protein conjugates formed were identified by affinity chromatography–mass spectrometry. This inverse drug discovery approach identified a compound that covalently binds to and irreversibly inhibits the activity of poly(ADP-ribose) polymerase 1, an important anticancer target in living cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SAFs 1–16 react with proteins in HEK293T cell lysate.
Fig. 2: Proteins targeted by SAFs 1–16 identified using isobaric MS/MS tagging in conjunction with proteomic mass spectrometry.
Fig. 3: Validation of reactions between SAFs and selected recombinant proteins.
Fig. 4: Analysis of PARP1 inhibitory activity of a subset of SAFs.
Fig. 5: SAF 2 irreversibly inhibits the activity of PARP1 in HeLa cells.

Similar content being viewed by others

Data availability

Additional methods and data are provided in the Supplementary Information. All data generated or analysed during this study are included in this published article (and its supplementary files). Source data are provided with this paper.

References

  1. Macarron, R. et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Disc. 10, 188–195 (2011).

    CAS  Google Scholar 

  2. Singh, J., Petter, R. C., Baillie, T. A. & Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Disc. 10, 307–317 (2011).

    CAS  Google Scholar 

  3. Bauer, R. A. Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies. Drug Disc. Today 20, 1061–1073 (2015).

    CAS  Google Scholar 

  4. Mortenson, D. E. et al. ‘Inverse drug discovery’ strategy to identify proteins that are targeted by latent electrophiles as exemplified by aryl fluorosulfates. J. Am. Chem. Soc. 140, 200–210 (2018).

    CAS  PubMed  Google Scholar 

  5. Dong, J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(vi) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. 53, 9430–9448 (2014).

    CAS  Google Scholar 

  6. Chen, W. et al. Arylfluorosulfates inactivate intracellular lipid binding protein(s) through chemoselective SuFEx reaction with a binding site Tyr residue. J. Am. Chem. Soc. 138, 7353–7364 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dong, J., Sharpless, K. B., Kwisnek, L., Oakdale, J. S. & Fokin, V. V. SuFEx-based synthesis of polysulfates. Angew. Chem. Int. Ed. 53, 9466–9470 (2014).

    CAS  Google Scholar 

  8. Gao, B. et al. Bifluoride-catalysed sulfur(vi) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates. Nat. Chem. 9, 1083–1088 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, H. et al. SuFEx-based polysulfonate formation from ethenesulfonyl fluoride–amine adducts. Angew. Chem. Int. Ed. 56, 11203–11208 (2017).

    CAS  Google Scholar 

  10. Liu, Z. et al. SuFEx click chemistry enabled late-stage drug functionalization. J. Am. Chem. Soc. 140, 2919–2925 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, S., Wu, P., Moses, J. E. & Sharpless, K. B. Multidimensional SuFEx click chemistry: sequential sulfur(vi) fluoride exchange connections of diverse modules launched from an SOF4 hub. Angew. Chem. Int. Ed. 56, 2903–2908 (2017).

    CAS  Google Scholar 

  12. Wang, Q. et al. Bioconjugation by copper(i)-catalyzed azide–alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2003).

    CAS  PubMed  Google Scholar 

  13. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(i)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    CAS  Google Scholar 

  14. Verhelst, S. H., Fonovic, M. & Bogyo, M. A mild chemically cleavable linker system for functional proteomic applications. Angew. Chem. Int. Ed. 46, 1284–1286 (2007).

    CAS  Google Scholar 

  15. Dayon, L. et al. Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal. Chem. 80, 2921–2931 (2008).

    CAS  PubMed  Google Scholar 

  16. Konecny, G. E. & Kristeleit, R. S. PARP inhibitors for BRCA1/2-mutated and sporadic ovarian cancer: current practice and future directions. Br J. Cancer 115, 1157–1173 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lord, C. J. & Ashworth, A. BRCAness revisited. Nat. Rev. Cancer 16, 110–120 (2016).

    CAS  PubMed  Google Scholar 

  18. Lue, H., Kleemann, R., Calandra, T., Roger, T. & Bernhagen, J. Macrophage migration inhibitory factor (MIF): mechanisms of action and role in disease. Microbes Infect. 4, 449–460 (2002).

    CAS  PubMed  Google Scholar 

  19. Calandra, T. & Roger, T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat. Rev. Immunol. 3, 791–800 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Imig, J. D. & Hammock, B. D. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat. Rev. Drug Disc. 8, 794–805 (2009).

    CAS  Google Scholar 

  21. Tonjes, M. et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat. Med. 19, 901–908 (2013).

    PubMed  PubMed Central  Google Scholar 

  22. Xu, M. et al. BCAT1 promotes tumor cell migration and invasion in hepatocellular carcinoma. Oncol. Lett. 12, 2648–2656 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, L. & Han, J. Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function. Biochem. Biophys. Res. Commun. 486, 224–231 (2017).

    CAS  PubMed  Google Scholar 

  24. Zhao, Q. et al. Broad-spectrum kinase profiling in live cells with lysine-targeted sulfonyl fluoride probes. J. Am. Chem. Soc. 139, 680–685 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng, Q. et al. SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc. Natl Acad. Sci. USA 116, 18808–18814 (2019).

    CAS  PubMed  Google Scholar 

  26. Hett, E. C. et al. Rational targeting of active-site tyrosine residues using sulfonyl fluoride probes. ACS Chem. Biol. 10, 1094–1098 (2015).

    CAS  PubMed  Google Scholar 

  27. Hanoulle, X. et al. A new functional, chemical proteomics technology to identify purine nucleotide binding sites in complex proteomes. J. Proteome Res. 5, 3438–3445 (2006).

    CAS  PubMed  Google Scholar 

  28. Goto, M. et al. Structural determinants for branched-chain aminotransferase isozyme-specific inhibition by the anticonvulsant drug gabapentin. J. Biol. Chem. 280, 37246–37256 (2005).

    CAS  PubMed  Google Scholar 

  29. Morisseau, C. & Hammock, B. D. Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Ann. Rev. Pharmacol. Toxicol. 45, 311–333 (2005).

    CAS  Google Scholar 

  30. Spencer, E. S. et al. Multiple binding modes of isothiocyanates that inhibit macrophage migration inhibitory factor. Eur. J. Med. Chem. 93, 501–510 (2015).

    CAS  PubMed  Google Scholar 

  31. Lee, K. S. et al. Optimized inhibitors of soluble epoxide hydrolase improve in vitro target residence time and in vivo efficacy. J. Med. Chem. 57, 7016–7030 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Barbosa-Sicard, E. et al. Inhibition of the soluble epoxide hydrolase by tyrosine nitration. J. Biol. Chem. 284, 28156–28163 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    CAS  PubMed  Google Scholar 

  34. Dawicki-McKenna, J. M. et al. PARP-1 activation requires local unfolding of an autoinhibitory domain. Mol. Cell 60, 755–768 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Langelier, M.-F., Servent, K. M., Rogers, E. E. & Pascal, J. M. A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme activation. J. Biol. Chem. 283, 4105–4114 (2008).

    CAS  PubMed  Google Scholar 

  36. Gibson, B. A. & Kraus, W. L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13, 411–424 (2012).

    CAS  PubMed  Google Scholar 

  37. Coleman, R. L. et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet 390, 1949–1961 (2017).

    CAS  Google Scholar 

  38. Thorsell, A.-G. et al. Structural basis for potency and promiscuity in poly(ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J. Med. Chem. 60, 1262–1271 (2017).

    CAS  PubMed  Google Scholar 

  39. Futreal, P. et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science 266, 120–122 (1994).

    CAS  PubMed  Google Scholar 

  40. Wooster, R. et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789–792 (1995).

    CAS  Google Scholar 

  41. Durkacz, B. W., Omidiji, O., Gray, D. A. & Shall, S. (ADP-ribose)n participates in DNA excision repair. Nature 283, 593–596 (1980).

    CAS  PubMed  Google Scholar 

  42. Tentori, L. & Graziani, G. Chemopotentiation by PARP inhibitors in cancer therapy. Pharmacol. Res. 52, 25–33 (2005).

    CAS  PubMed  Google Scholar 

  43. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    CAS  PubMed  Google Scholar 

  44. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    CAS  PubMed  Google Scholar 

  45. Nijman, S. M. B. Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett. 585, 1–6 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bridges, C. B. The origin of variations in sexual and sex-limited characters. Am. Nat. 56, 51–63 (1922).

    Google Scholar 

  47. Pujade-Lauraine, E. et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 18, 1274–1284 (2017).

    CAS  PubMed  Google Scholar 

  48. Kam, T.-I. et al. Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson’s disease. Science 362, eaat8407 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. Berger, N. A. et al. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br. J. Pharmacol. 175, 192–222 (2018).

    CAS  PubMed  Google Scholar 

  50. Ryno, L. M. et al. Characterizing the altered cellular proteome induced by the stress-independent activation of heat shock factor 1. ACS Chem. Biol. 9, 1273–1283 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Skaggs Institute for Chemical Biology, the Lita Annenberg Hazen Foundation and National Institutes of Health grants DK046335 (J.W.K.). R.C.B. was supported by a grant from the American Cancer Society. D.E.M. was supported by a grant from the George E. Hewitt Foundation for Medical Research. This work was supported in part by the National Institute of Environmental Health Sciences (NIEHS) Grant R35 ES030443, and NIEHS Superfund Research Program P42 ES004699.

Author information

Authors and Affiliations

Authors

Contributions

G.J.B., R.C.B. and J.W.K. conceived and designed the experiments G.J.B., R.C.B., S.L., L.N., D.E.M., G.L., C.M. and H.W. carried out the experiments and performed the data analysis G.J.B., R.C.B., S.L., C.M., B.D.H., K.B.S. and J.W.K. co-wrote the paper.

Corresponding authors

Correspondence to K. Barry Sharpless or Jeffery W. Kelly.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs, 1–9, biological methods, synthetic protocol for the sulfuramidimidoyl fluorides, references and NMR spectra.

Reporting Summary

Supplementary Dataset 1

Excel spreadsheet of mass spectrometry proteomics data.

Supplementary Dataset 2

Excel spreadsheet of peptide mapping data.

Supplementary Dataset 3

Excel spreadsheet of Gene Ontology data.

Source data

Source Data Fig. 1

Unprocessed gel.

Source Data Fig. 3

Unprocessed gels.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Unprocessed gels.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Unprocessed gels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brighty, G.J., Botham, R.C., Li, S. et al. Using sulfuramidimidoyl fluorides that undergo sulfur(vi) fluoride exchange for inverse drug discovery. Nat. Chem. 12, 906–913 (2020). https://doi.org/10.1038/s41557-020-0530-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0530-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research