Skip to main content
Log in

Insight into Structural, Electronic, Magnetic, and Elastic Properties of Full-Heusler Alloys Co2YPb (Y = Ti, V, Fe, and Mo): Ab Initio Study

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We have studied the structural, electronic, magnetic, and elastic properties of full-Heusler alloys Co2YPb (Y = Ti, V, Fe, and Mo) with the help of ab initio calculation using Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method which is based on density functional theory (DFT) implemented in the wien2k code with Generalized Gradient Approximation (GGA). For exchange and correlation potential, we have applied a modified version of the potential proposed by Becke—Johnson (mBJ) to our compounds in order to improve the band-gaps and approach them for experimental results. Electronic and magnetic properties show that the full-Heusler Co2YPb (Y = Ti, V, Fe, and Mo) are half-metallic ferromagnetic (HMF) compounds. Elastic properties indicate that Co2YPb is mechanically stable and each compound is ductile in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Heusler, Verh. Dtsch. Phys. Ges. 12, 219 (1903).

    Google Scholar 

  2. A. J. Bradley and J. Rodgers, Proc. R. Soc. London, Ser. A 144, 340 (1934).

    ADS  Google Scholar 

  3. S. Chadov, T. Graf, K. Chadova, X. Dai, F. Casper, G. H. Fecher, and C. Felse, Phys. Rev. Lett. 107, 047202 (2011).

    ADS  Google Scholar 

  4. M. Hara, J. Shibata, T. Kimura, and Y. Otani, Appl. Phys. Lett. 88, 082501 (2006).

    ADS  Google Scholar 

  5. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. Daughton, V. S. von Molnár, M. Roukes, A. Y. Chtchelkanova, and D. Treger, Science (Washington, DC, U. S.) 294, 1488 (2001).

    ADS  Google Scholar 

  6. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).

    ADS  Google Scholar 

  7. S. Ouardi, G. H. Fecher, B. Balke, X. Kozina, G. Stryganyuk, C. Felser, S. Lowitzer, D. Köodderitzsch, H. Ebert, and E. Ikenaga, Phys. Rev. B 82, 085108 (2010).

    ADS  Google Scholar 

  8. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).

    ADS  Google Scholar 

  9. J. Kübler, A. R. Williams, and C. B. Sommers, Phys. Rev. B 28, 1745 (1983).

    ADS  Google Scholar 

  10. R. Shein, V. L. Kozhevnikov, and A. L. Ivanovskii, JETP Lett. 82, 220 (2005).

    ADS  Google Scholar 

  11. E. Bayar, N. Kervan, and S. Kervan, J. Magn. Magn. Mater. 323, 2945 (2011).

    ADS  Google Scholar 

  12. J. de Boeck, W. van Roy, J. Das, V. Motsnyi, Z. Liu, L. Lagae, H. Boeve, K. Dessein, and G. Borghs, Semicond. Sci. Technol. 17, 342 (2002).

    ADS  Google Scholar 

  13. M. G. Kostenko, A. V. Lukoyanov, and E. I. Shreder, JETP Lett. 107, 126 (2018).

    Google Scholar 

  14. V. A. Ivanshin, T. O. Litvinova, A. A. Sukhanov, D. A. Sokolov, and M. C. Aronson, JETP Lett. 90, 116 (2009).

    ADS  Google Scholar 

  15. Y. Miura, H. Uchida, Y. Oba, K. Abe, and M. Shirai, Phys. Rev. B 78, 064416 (2008).

    ADS  Google Scholar 

  16. M. Julliere, Phys. Lett. A 54, 90174 (1975).

    Google Scholar 

  17. K. Seema, N. M. Umran, and R. Kumar, J. Supercond. Novel Magn. 29, 401 (2016).

    Google Scholar 

  18. S. Benatmane and S. Cherid, JETP Lett. (2020). https://doi.org/10.1134/S0021364020120012

  19. J. de Boeck, W. van Roy, V. Motsnyi, Z. Liu, K. Dessein, and G. Borghs, Thin Solid Films 412, 3 (2002).

    ADS  Google Scholar 

  20. J. Kubler, G. H. Fecher, and C. Felser, Phys. Rev. B 76, 024414 (2007).

    ADS  Google Scholar 

  21. X. Q. Chen, R. Podloucky, and P. Rogl, J. Appl. Phys. 100, 113901 (2006).

    ADS  Google Scholar 

  22. T. Block, C. Felser, G. Jakob, J. Ensling, B. Muhling, P. Gutlich, and R. J. Cava, J. Solid State Chem. 176, 646 (2003).

    ADS  Google Scholar 

  23. T. Marukame, T. Ishikawa, S. Hakamata, K. Matsuda, T. Uemura, and M. Yamamoto, Appl. Phys. Lett. 90, 012508 (2007).

    ADS  Google Scholar 

  24. Z. Q. Bai, Y. H. Lu, L. Shen, V. Ko, G. Han, and Y. Feng, J. Appl. Phys. 111, 093911 (2012).

    ADS  Google Scholar 

  25. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 80, 891 (1998).

    ADS  Google Scholar 

  26. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    ADS  Google Scholar 

  27. F. Tran, P. Blaha, and K. Schwarz, J. Phys.: Condens. Matter 19, 196208 (2007).

    ADS  Google Scholar 

  28. G. Pagare, S. S. Chouhan, P. Soni, S. P. Sanyal, and M. Rajagopalan, Solid State Sci. 18, 141 (2013).

    ADS  Google Scholar 

  29. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    ADS  MathSciNet  Google Scholar 

  30. F. Birch, Phys. Rev. 71, 809 (1947).

    ADS  Google Scholar 

  31. F. D. Murnaghan, Acad. Sci. 30, 244 (1944).

    Google Scholar 

  32. N. Karimian and F. Ahmadian, Solid State Commun. 223, 60 (2015).

    ADS  Google Scholar 

  33. P. Dufek, P. Blaha, and K. Schwarz, Phys. Rev. B 50, 7279 (1994).

    ADS  Google Scholar 

  34. E. Engel and S. H. Vosko, Phys. Rev. B 47, 13164 (1993).

    ADS  Google Scholar 

  35. J. Camargo-Martínez and R. Baquero, Phys. Rev. B 86, 195106 (2012).

    ADS  Google Scholar 

  36. M. Mokhtari, D. Amari, F. Dahmane, G. Benabdellah, L. Zekri, and N. Zekri, SPIN 10, 2050005 (2020).

    ADS  Google Scholar 

  37. R. J. Soulen, Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. Cheng, P. R. Broussard, C. Tanaka, J. Nowak, and J. Moodera, Science (Washington, DC, U. S.) 282, 85 (1998).

    ADS  Google Scholar 

  38. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).

    ADS  Google Scholar 

  39. N. Zheng and Y. Jin, J. Magn. Magn. Mater. 324, 3099 (2012).

    ADS  Google Scholar 

  40. A. Birsan, Curr. Appl. Phys. 14, 1434 (2014).

    ADS  Google Scholar 

  41. G. Grimvall, Thermophysical Properties of Materials (Elsevier, Amsterdam, 1999).

    Google Scholar 

  42. G. V. Sinko and N. A. Smirnov, J. Phys.: Condens. Matter 14, 6989 (2002).

    ADS  Google Scholar 

  43. M. Born and K. Huang, Dynamical Theory and Experiment I (Springer, Berlin, 1982).

    Google Scholar 

  44. O. Beckstein, J. Klepeis, G. Hart, and O. Pankratov, Phys. Rev. B 63, 134112 (2001).

    ADS  Google Scholar 

  45. W. Voigt, Lehrburch der Kristallphysik (Teubner, Leipzig, 1928).

    Google Scholar 

  46. A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).

    Google Scholar 

  47. R. Hill, Proc. Phys. Soc., Sect. A 65, 350 (1952).

    ADS  Google Scholar 

  48. S. Boucetta, J. Magnes. Alloys 2, 59 (2014).

    Google Scholar 

  49. S. F. Pugh, Philos. Mag. 45, 43 (1954).

    Google Scholar 

  50. S. Huang, R. Z. Li, S. T. Qi, B. Chen, and J. Shen, Phys. Scr. 89, 065702 (2014).

    ADS  Google Scholar 

  51. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1956).

    MATH  Google Scholar 

  52. M. Houari, B. Bouadjemi, S. Haid, M. Matougui, T. Lantri, Z. Aziz, S. Bentata, and B. Bouhafs, Indian J. Phys. 94, 455 (2019).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bouadjemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zitouni, A., Remil, G., Bouadjemi, B. et al. Insight into Structural, Electronic, Magnetic, and Elastic Properties of Full-Heusler Alloys Co2YPb (Y = Ti, V, Fe, and Mo): Ab Initio Study. Jetp Lett. 112, 290–298 (2020). https://doi.org/10.1134/S0021364020170026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020170026

Navigation