Skip to main content
Log in

The Effect of an Alternating Magnetic Field and Silver Nanoparticles on the Spectral Characteristics of an Aqueous Solution of Human Serum Albumin

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

In this paper, we discuss experimental data obtained during study of the effect of a low-frequency alternating magnetic field on the conformational transitions of human serum albumin in the presence of silver nanoparticles using fluorescence spectroscopy at different pH values. A sharp increase in the albumin fluorescence intensity was detected in the presence of silver nanoparticles; this effect changed when exposed to a low-frequency alternating magnetic field. The resulting calculation formula for cross section of light scattering by a spherical nanoparticle of a certain radius allows calculation of the sizes of nano-microstructures based on nanoparticles and natural biopolymers of the “core–shell” type, whose physicochemical properties can be controlled by a magnetic field. The proposed model for the formation of protein–nanoparticle associates in the solution by the dipole–dipole mechanism is in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Peters, Jr., All about Albumin: Biochemistry, Genetics, and Medical Applications (Academic, San Diego, 1996).

    Google Scholar 

  2. N. N. Pshenikina, Farmakologiya 12 (1), 1065 (2011).

    Google Scholar 

  3. G. Sudlow, D. J. Birkett, and D. N. Wade, Clin. Exp. Pharmacol. Physiol. 2 (2), 129 (1975).

    Article  Google Scholar 

  4. J. K. Kamal, L. Zhao, and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 101 (37), 13411 (2004).

    Article  ADS  Google Scholar 

  5. B. A. Noskov, A. A. Mikhailovskaya, S. Y. Lin, et al., Langmuir 26 (22), 17225 (2010).

    Article  Google Scholar 

  6. Yu. A. Krutikov, A. A. Kudrinskii, A. Yu. Oleinik, et al., Usp. Khim. 77 (3), 242 (2008).

    Google Scholar 

  7. I. E. Stanishevskaya, A. M. Stoinova, A. I. Marakhova, et al., Razrabotka Registr. Lekarstv. Sredstv 1 (14), 66 (2016).

    Google Scholar 

  8. S. S. Dzhimak, V. V. Malyshko, A. I. Goryachko, et al., Nanotechnologies in Russia 14 (1–2), 48 (2019). https://doi.org/10.1134/S199507801901004x

  9. A. A. Skirtach, A. A. Antipov, D. G. Shchukin, and G. B. Sukhorukov, Langmuir 20 (17), 6988 (2004).

    Article  Google Scholar 

  10. A. Wang and Y. Cui, Chem. Asian J. 5 (8), 1780 (2010).

    Article  Google Scholar 

  11. C. M. Dvorocek, G. Sukhonosova, et al., Langmuir 25 (17), 10322 (2009).

    Article  Google Scholar 

  12. A. M. Yashchenok, Doctoral Dissertation in Mathematics and Physics (Saratov, 2016).

  13. A. K. Zeinidenov, N. Kh. Ibraev, M. G. Kucherenko, Vestn. OGU 9 (170), 96 (2014).

    Google Scholar 

  14. E. E. Tekutskaya, M. G. Barishev, and G. P. Ilchenko, Biophysics 60 (6), 913 (2015). https://doi.org/10.1134/S000635091506024x

    Article  Google Scholar 

  15. E. E. Tekutskaya, Russ. Open Med. J. 8 (2), e0202 (2019). https://doi.org/10.15275/rusomj.2019.0202

    Article  Google Scholar 

  16. E. E. Tekutskaya, S. S. Dzhimak, A. A. Basov, et al., Med. News North Caucasus 10 (3), 287 (2015). https://doi.org/10.14300/mnnc.2015.10067

    Article  Google Scholar 

  17. G. P. Il’chenko, M. G. Baryshev, E. E. Tekutskaya, et al., Measur. Techn. 60 (6), 632 (2017). https://doi.org/10.1007/s11018-017-1247-7

    Article  Google Scholar 

  18. A. N. Gerasimov, Medical Statistics (Moscow, 2007) [in Russian].

    Google Scholar 

  19. I. M. Vlasova and A. M. Saletskii, Russ. J. Phys. Chem. B 3 (6), 976 (2009).

    Article  Google Scholar 

  20. C. R. Bohreh and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2009).

    Google Scholar 

  21. V. L. Ermolaev, E. N. Bodunov, and E. B. Sveshnikova, Nonradiative Transfer of Electronic Excitation Energy (Nauka, Leningrad, 1977) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Tekutskaya.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by G. Levit

Abbreviations: HSA, human serum albumin; MF, magnetic field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekutskaya, E.E., Baryshev, M.G., Tumaev, E.N. et al. The Effect of an Alternating Magnetic Field and Silver Nanoparticles on the Spectral Characteristics of an Aqueous Solution of Human Serum Albumin. BIOPHYSICS 65, 404–409 (2020). https://doi.org/10.1134/S0006350920030203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920030203

Navigation