Skip to main content
Log in

Phenotypic Accommodation in Sea Urchins Grown under Geometric Constraint

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Sea urchins and their relatives are grouped together taxonomically in the class Echinoidea (phylum Echinodermata). Echinoids exhibit remarkable variation in their pentaradially symmetric body shape phenotypes, from spheroid tests (skeletons) in sea urchins to discoid tests in sand dollars. Researchers have speculated on the morphological evolutionary transitions among these phenotypes without reaching consensus. We designed and performed an experiment in which sea urchins grew under a geometric constraint manifested through restricted vertical spatial dimension physically limiting growth in height. Individuals in this treatment group became flatter relative to individuals in a control group after 8 weeks. These findings may be considered as instantiating phenotypic accommodation, an underappreciated phenomenon that may constitute the first step in novel phenotype evolution. We present preliminary speculations relating phenotypically accommodated changes in shape and morphological evolutionary relationships among echinoids. By demonstrating a plausible initiating mechanism in a morphological transition, we hope to contribute to theoretical discussions about phenotypic evolution, emphasizing the role that physical factors play in changing complex biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. Abou Chakra and J. R. Stone, Paleobiology 37, 686–695 (2011).

    Article  Google Scholar 

  2. J. Cohen, Psychol. Bull. 112, 155–159 (1992).

    Article  Google Scholar 

  3. J. Dafni, J. Exp. Mar. Biol. Ecol. 47, 259–279 (2011).

    Article  Google Scholar 

  4. J. Dafni, J. Exp. Mar. Biol. Ecol. 67, 1–15 (1983).

    Article  Google Scholar 

  5. J. Dafni, Paleobiology 12, 143–60 (1986).

    Article  Google Scholar 

  6. J. Dafni and J. Erez, Mar. Biol. 95, 275–287 (1987).

    Article  Google Scholar 

  7. R. Dalton, Nature 403, 125 (2000).

    Article  ADS  Google Scholar 

  8. B. David and R. Mooi, C. R. Acad. Sci. Paris Ser. 3 319, 577–584 (1996).

    Google Scholar 

  9. B. David and R. Mooi, in Echinoderms: Proc. 9th Int. Echinoderm Conf., San Francisco, CA, Ed. by R. Mooi and M. Telford (Balkema, Rotterdam, 1998), pp. 21–28.

  10. T. A. Ebert, J. Nat. Hist. 22, 1407–1425 (1988).

    Article  Google Scholar 

  11. O. Ellers, Proc. R. Soc. Lond. B 254, 123–129 (1993).

    Article  ADS  Google Scholar 

  12. O. Ellers, A. Johnson, and P. Moberg, P. Biol. Bull. 195, 136–144 (1998).

    Article  Google Scholar 

  13. C. Fernandez, Mar. Ecol. Prog. Ser. 152, 45–54 (1997).

    Article  Google Scholar 

  14. S. B. George, J. M. Lawrence, and A. L. Lawrence, Aquaculture 242, 217–228 (2004).

    Article  Google Scholar 

  15. C. S. Goodman and B. C. Coughlin, Proc. Natl. Acad. Sci. U. S. A. 97, 4424–4425 (2000).

    Article  ADS  Google Scholar 

  16. S. J. Gould, Paleobiology 17, 411–423 (1991).

    Article  Google Scholar 

  17. R. T. Hinegardner, Biol. Bull. 137, 465–475 (1969).

    Article  Google Scholar 

  18. S. Hörstadius, Biol. Rev. 14, 132–179 (1939).

    Article  Google Scholar 

  19. L. H. Hyman, The Invertebrates: Echinodermata (McGraw-Hill, New York, 1955).

    Google Scholar 

  20. R. T. Jackson, Mem. Boston Soc. Nat. Hist. 7 (1912).

  21. A. S. Johnson and O. Ellers, in Echinoderms: Proc. 9th Int. Echinoderm Conf., San Francisco, CA, Ed. by R. Mooi and M. Telford (Balkema, Rotterdam, 1998), p. 705.

  22. A. S. Johnson, O. Ellers, J. Lemire, M. Minor, and H. Leddy, Proc. R. Soc. Lond. B 269, 215–220 (2002).

    Article  Google Scholar 

  23. Kroh and A. B. Smith, J. Syst. Pal. 7, 147–212 (2010).

    Article  Google Scholar 

  24. D. C. C. Lau, S. C. K. Lau, P.-Y. Qian, and J.-W. Qiu, J. Shell. Res. 28, 383–388 (2009).

    Google Scholar 

  25. B. Lelievre, M. Telford, and O. Ellers, in Echinoderm Research 1995. Proceedings of the 4th European Echinoderms Colloquium, London, Ed. by R. H. Emson, A. B. Smith, and A. C. Campbell (Balkema, Rotterdam, 1995), pp. 103–109.

  26. J. E. Mazur and J. W. Miller, Ohio J. Sci. 71, 30–36 (1971).

    Google Scholar 

  27. K. Märkel, Zoomorphology 97, 31–52 (1981).

    Article  Google Scholar 

  28. E. McCarron, G. Burnell, and G. Mouzakitis, Aquaculture 288, 83–91 (2009).

    Article  Google Scholar 

  29. R. Mooi and B. David, Paleontol. Soc. Pap. 3, 305–335 (1997).

    Article  Google Scholar 

  30. T. Motokawa, Biol. Rev. 59, 255-270 (1984).

    Article  Google Scholar 

  31. J. S. Pearse and V. B. Pearse, Am. Zool. 15, 731–753 (1975).

    Article  Google Scholar 

  32. R. Raff, Nat. Rev. Genet. 1, 74–79 (2000).

    Article  Google Scholar 

  33. R. Raff and A. Love, J. Exp. Zool. (Mol. Dev. Evol.) 302B, 19–34 (2004).

    Article  Google Scholar 

  34. M. P. Russell, J. Exp. Mar. Biol. Ecol. 220, 1–14 (1998).

    Article  Google Scholar 

  35. A. B. Smith, Echinoid Palaeobiology (Allen & Unwin, London, 1984).

    Google Scholar 

  36. M. M. Smith, L. C. Smith, R. A. Cameron, and L. A. Urry, J. Morphol. 269, 713–733 (2008).

    Article  Google Scholar 

  37. R. R. Sokal and F. J. Rohlf, Biometry, 3rd ed. (Freeman, New York, 1995).

    MATH  Google Scholar 

  38. G. Tabachnick and L. S. Fidell, Using Multivariate Statistics, 5th ed. (Allyn and Bacon, 2007).

    Google Scholar 

  39. M. Telford, Zoomorphology 105, 114–124 (1985).

    Article  Google Scholar 

  40. M. Telford and O. Ellers, Invertebr. Biol. 116, 405 255–256 (1997).

  41. W. Thompson, On Growth and Form (Cambridge Univ. Press, Cambridge, 1917).

    Google Scholar 

  42. M. J. West-Eberhard, J. Exp. Zool. 304B, 610 (2005).

    Article  Google Scholar 

  43. C. Wilkie, Mar. Behav. Physiol. 11, 1 (1984).

    Article  Google Scholar 

  44. C. Wilkie, in Echinoderm Studies, Ed. by M. Jangoux and J. M. Lawrence (Balkema, Rotterdam, 1996), pp. 61–102.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Resources to develop the material presented herein were provided by the Department of Biology, Shared Hierarchical Academic Research Computing Network, and Origins Institute at McMaster University.

Funding

Financial constraints were overcome with funds provided by Natural Sciences and Engineering Research Council of Canada (Discovery Grant 261590); unlimited industriousness to construct constraining apparatus were contributed by R. Gilles and D. Oad; and suggestions to enhance experimentation were provided by I. Fernandez and M. Spyridis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathon Stone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Pedlar, S., Oad, A. et al. Phenotypic Accommodation in Sea Urchins Grown under Geometric Constraint. BIOPHYSICS 65, 472–478 (2020). https://doi.org/10.1134/S0006350920030136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920030136

Navigation