Skip to main content
Log in

A Study on Molecular Mechanisms of Terahertz Radiation Interaction with Biopolymers Based on the Example of Bovine Serum Albumin

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effect of terahertz radiation on the functional activity of bovine serum albumin was studied by electron paramagnetic resonance spectroscopy using spin trapping and spin probing techniques. The use of a pH sensitive imidazoline spin trap allowed us to record the change in the binding strength of albumin with nitric oxide. The change in the intensity and width of bands in the EPR spectrum of the spin probe under terahertz irradiation was shown using a spin probe formed directly in the aqueous solution of albumin from a precursor, dihydropyrazine dioxide, which indicates a change in the number and mobility of paramagnetic centers. The observed changes were correlated with the structural characteristics of the reaction centers of bovine serum albumin, the functional groups of the amino acids of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer-Verlag, USA, 2009).

    Google Scholar 

  2. M. Van Exter, C. Fattinger, and D. Grischkowsky, Opt. Lett. 14, 1128 (1989).

    Article  ADS  Google Scholar 

  3. V. I. Fedorov, D. S. Serdyukov, O. P. Cherkasova, et al., Optich. Zh. 84 (8), 9 (2017).

    Google Scholar 

  4. I. Ilina, D. S. Sitnikov, and M. B. Agranat, High Temperature 56 (5), 789 (2018).

    Article  Google Scholar 

  5. V. I. Fedorov, A. S. Pogodin, T. D. Dubatolova, et al., Biophysics (Moscow) 46 (2), 293 (2001).

    Google Scholar 

  6. A. A. Angeluts, A. B. Gapeyev, M. N. Esaulkov, et al., Quantum Electron. 44 (3), 247 (2014).

    Article  ADS  Google Scholar 

  7. G. J. Wilmink, B. D. Rivest, C. C. Roth, et al., Lasers Surg. Med. 44, 152 (2011).

    Article  Google Scholar 

  8. J.-Y. Chen, J. R. Knab, J. Cerne, et al., Phys. Rev. E 72 (4), 040901 (2005).

    Article  ADS  Google Scholar 

  9. J. Chen, J. Knab, S. Ye, et al., Appl. Phys. Lett. 90, 243901 (2007).

    Article  ADS  Google Scholar 

  10. O. P. CHerkasova, V. I. Fedorov, E. F. Nemova, and A. S. Pogodin, Optika Spektrosk. 107 (4), 566 (2009).

    Google Scholar 

  11. B. Born, S. J. Kim, S. Ebbinghaus, et al., Faraday Discuss. 141, 161 (2009).

    Article  ADS  Google Scholar 

  12. B. Born, H. Weinga¨rtner, E. Bru¨ndermann, et al., J. Am. Chem. Soc. 131, 3752 (2009).

    Article  Google Scholar 

  13. E. F. Nemova, O. P. Cherkasova, and V. I. Fedorov, Proc. SPIE 7993, 799325-1 (2010).

    Article  Google Scholar 

  14. O. P. Cherkasova, V. I. Fedorov, E. F. Nemova, et al., Proc. SPIE 6727, 672721-1 (2007).

    Article  Google Scholar 

  15. A. Farrugia, Transfusion Med. Rev. 24 (1), 53 (2010).

    Article  Google Scholar 

  16. A. V. Kapralova and A. S. Pogodin, Vestn. Novosibirsk. Univ., Ser. Fiz. 5 (4), 182 (2010).

    Google Scholar 

  17. V. D. Antsygin, A. A. Mamrashev, N. A. Nikolaev et al., Avtometriya 46 (3), 110 (2010).

    Google Scholar 

  18. G. G. Dultseva, G. I. Skubnevskaya, A. Ya. Tikhonov, et al., J. Phys. Chem., 100 (44), 17523 (1996).

    Article  Google Scholar 

  19. F. N. Dultsev and G. G. Dultseva, Chem. Engineer. Sci. 1 (2), 17 (2013).

    Article  Google Scholar 

  20. V. M. Govorun, V. E. Tretiakov, N. N. Tulyakov, et al., Int. J. Infrared Millimeter Waves 12 (12), 1469 (1991).

    Article  ADS  Google Scholar 

  21. A. C. Pereira, M. Paulo, A. V. Araujo, et al., Braz. J. Med. Biol. Res. 44 (9), 947 (2011).

    Article  Google Scholar 

  22. A. F. Vanin, Usp. Fiz. Nauk 170 (4), 455 (2000).

    Article  Google Scholar 

  23. V. I. Fedorov, N. Ya. Weisman, E. F. Nemova, et al. Biophysics (Moscow) 58 (6), 1043 (2013).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Spectroscopy and Optics Center for Collective Use of the Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, for providing the source of terahertz radiation.

Funding

The studies were carried out within the state program of the Ministry of Science and Higher Education of the Russian Federation (AAAA-A17-117030310290-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Nemova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Statement of compliance with standards of research involving humans as subjects. This article does not contain any studies involving humans as subjects of research.

Additional information

Translated by D. Novikova

Abbreviations: BSA, bovine serum albumin; DPDO, 1,4-dihydropyrazine dioxide; EPR, electron paramagnetic resonance; PMIO, 1,2,2,5,5-pentamethyl-3-imidazoline-3-oxide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemova, E.F., Cherkasova, O.P., Nikolaev, N.A. et al. A Study on Molecular Mechanisms of Terahertz Radiation Interaction with Biopolymers Based on the Example of Bovine Serum Albumin. BIOPHYSICS 65, 410–415 (2020). https://doi.org/10.1134/S000635092003015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635092003015X

Navigation