Skip to main content
Log in

Methemoglobin and the Activities of Catalase and Superoxide Dismutase in Nucleated Erythrocytes of Scorpaena porcus (Linnaeus, 1758) under Experimental Hypoxia (in vitro)

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effect of hypoxia on nucleated red blood cells of the black scorpionfish (Scorpaena porcus) was studied in vitro. Deep hypoxia (the oxygen concentration was less than 1 mg O2 L–1; the norm was 7–8 mg O2 L–1) led to the transition of a part of the hemoglobin molecules to the ferric state (methemoglobin). The maximum increase in the concentration of methemoglobin was 32%. The accumulation of methemoglobin in red blood cells was accompanied by an increase in the activity of catalase and superoxide dismutase and a decrease in the content of reactive oxygen species in the cytoplasm of cells. It was shown that the formation of methemoglobin did not cause damage to the cytoplasmic membranes of red blood cells. The percentage of red blood cell lysis in deoxygenated (less than 1.0 mg O2 L–1) suspensions quantitatively coincided with the control values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. N. Schechter, Blood 112 (10), 3927 (2008).

    Article  Google Scholar 

  2. F. B. Jensen, A. Fago, and R. E. Weber, in Fish Physiology, Ed. by S. F. Perry and B. L. Tufts (Academic, San Diego, 1998), Vol. 17, pp. 1–40.

    Google Scholar 

  3. M. S. Krishna and G. Venkataramana, Ind. J. Physiol. Pharmacol. 51 (3), 284 (2007).

    Google Scholar 

  4. M. J. Percy and T. R. Lappin, Br. J. Haematol. 141, 298 (2008).

    Google Scholar 

  5. E. Mather-Mihaich, R. T. Di-Giulio, Arch. Environ. Contam. Toxicol. 20 (3), 391 (1991).

    Article  Google Scholar 

  6. R. V. Zikic, A. Stajn, and V. M. Petrovic, Acta Biol. Jugosl. C 27 (1), 45 (1991).

    Google Scholar 

  7. C. S. Tucker and J. R. MacMillan, J. Appl. Aquacult. 1 (4), 21 (1992).

    Article  Google Scholar 

  8. E. J. Schoore, B. A. Simco, and K. B. Davis, J. Aquat. Anim. Health. 7 (4), 304 (1995).

    Article  Google Scholar 

  9. J. Wdzieczak, et al., Comp. Biochem. Physiol. B 73 (2), 361 (1982).

    Article  Google Scholar 

  10. A. L. Dafre and E. Reischl, Comp. Biochem. Physiol. B 116 (3), 323 (1997).

    Article  Google Scholar 

  11. J. Hardig and L. B. Hoglund, Comp. Biochem. and Physiol. A 76 (1), 27 (1983).

    Article  Google Scholar 

  12. J. Sajiki and K. Takahashi, Eisei-Kagaku 37 (6), 467 (1991).

    Article  Google Scholar 

  13. R. R. Wilson, Jr. and F. C. Knowles, Arch. Biochem. Biophys. 255, 210 (1987).

    Article  Google Scholar 

  14. E. G. Affonso, et al., Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 133 (3), 375 (2002).

    Article  Google Scholar 

  15. N. Chen, et al., Frontiers Physiol. 8 (1), 1 (2017).

    Google Scholar 

  16. C. P. Olander and C. E. Parr, Experientia 33 (12), 1656 (1978).

    Article  Google Scholar 

  17. J. Arnaud, et al., Ann. Human Biol. 6 (6), 585 (1979).

    Article  Google Scholar 

  18. A. Mansouri, Experientia 37, 95 (1981).

    Article  Google Scholar 

  19. W. G. Willmore and K. B. Storey, Mol. Cell. Biochem. 170, 177 (1997).

  20. V. I. Lushchak and T. V. Bagnyukova, Comp. Biochem. Physiol. B 144, 283 (2006).

    Article  Google Scholar 

  21. A. Stara, J. Machova, and J. Velisek, Neuroendocrinol. Lett. 33 (3), 130 (2012).

    Google Scholar 

  22. A. A. Soldatov, Hydrobiol. J. 41 (1), 113 (2005).

    Article  Google Scholar 

  23. K. Tiihonen, M. Nikinmaa, J. Exp. Biol. 161, 509 (1991).

    Google Scholar 

  24. R. E. Benesch, R. Benesch, and S. Yung, Anal. Biochem. 55 (1), 245 (1973).

    Article  Google Scholar 

  25. A. A. Soldatov, O. L. Gostyukhina, and I. V. Golovina, J. Evol. Biochem. Physiol. 44, 175 (2008).

    Article  Google Scholar 

  26. R. G. Boutilier and R. A. Ferguson, Can. J. Zool. 67 (12), 2986 (1989).

    Article  Google Scholar 

  27. M. C. L. Phillips, C. D. Moyes, and B. L. Tufts, J. Exp. Biol. 203 (6), 1039 (2000).

    Google Scholar 

  28. N. C. Adragna, M. Di Fulvio, and P. K. Lauf, J. Membrane Biol. 201 (3), 109. (2004).

    Article  Google Scholar 

  29. W. J. Wallace, et al., J. Biol. Chem. 257, 4966 (1982).

    Google Scholar 

  30. M. F. Perutz, Annu. Rev. Physiol. 52, 1 (1990).

    Article  Google Scholar 

  31. A. Soivio, K. Nyholm, and K. Westman, J. Fish Biol. 6 (6), 763 (1974).

    Article  Google Scholar 

  32. M. Nikinmaa, et al., J. Exp. Biol. 47 (1), 53 (1987).

    Google Scholar 

  33. K. Holk, Fish Physiol. Biochem. 15 (5), 371 (1996).

    Article  ADS  Google Scholar 

  34. B. Tufts, Can. J. Zool. 70 (3), 411 (1992).

    Article  Google Scholar 

  35. R. A. Ferguson and R. G. Boutilier, Respir. Physiol. 74 (6), 65 (1988).

    Article  Google Scholar 

  36. A. Salama and M. Nikinmaa, Raporttisar. Mat.-Luonnontieteenllis. Tiedekunnan / Joensuun Gliopisto 30, 13 (1991).

  37. A. L. Val, G. C. De Menezes, and C. M. Wood, J. Fish Biol. 52 (1), 83 (1997).

    Article  Google Scholar 

  38. A. Y. Andreyeva, A. A. Soldatov, and V. S. Mukhanov, In vitro Cell. Dev. Biol. Anim. 53 (4), 312 (2017).

    Article  Google Scholar 

  39. A. White, P. Handler, and E. L. Smith, Principles of Biochemistry (McGraw-Hill, 1978), Vol. 3.

    Google Scholar 

  40. J. N. Cameron, Comp. Biochem. Physiol. A 40 (3), 743 (1971).

    Article  Google Scholar 

  41. A. A. Soldatov and I. A. Parfenova, J. Evol. Biochem. Physiol. 37 (6), 622 (2001).

    Article  Google Scholar 

Download references

Funding

This work was performed within the framework of the State Task, State Registration no. AAAA-A18-118021490093-4; and with partial financial support of the Russian Foundation for Basic Research, project no. 16-04-00135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Soldatov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

All applicable international, national and institutional principles for the care and use of animals in the performance of work have been observed.

Additional information

Translated by E. Puchkov

Abbreviations: Hb, hemoglobin; HbO2, oxyhemoglobin; MtHb, methemoglobin; NADH, nicotinamide adenine dinucleotide (reduced); CAT, catalase; SOD, superoxide dismutase; ROS, reactive oxygen species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatov, A.A., Andreeva, A.Y., Kukhareva, T.A. et al. Methemoglobin and the Activities of Catalase and Superoxide Dismutase in Nucleated Erythrocytes of Scorpaena porcus (Linnaeus, 1758) under Experimental Hypoxia (in vitro). BIOPHYSICS 65, 452–459 (2020). https://doi.org/10.1134/S0006350920030197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920030197

Navigation