Skip to main content
Log in

The Effects of Low-Intensity Millimeter-Wavelength Radiation and Electromagnetic Shielding on Pain Sensitivity in Rats

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Here, we studied changes in pain sensitivity in rats subjected to low-intensity millimeter-wavelength electromagnetic radiation (EMR MM) of 7.1 mm and 0.1 mW/cm2 in the occipital-collar region with daily exposure of 30 min over 21 days. As well, this radiation was combined with moderate electromagnetic shielding (EMS) which had the following parameters. The shielding coefficients of the constant component of the magnetic field along the vertical and horizontal constituents were 4.4- and 20-fold, respectively, with an exposure of 22 h/day over 21 days. The pain sensitivity was estimated with algometric tests, that is, the hot plate, flick-tail, and algesimeter-pincher tests; these allowed observation of the pain impulse at different regulatory levels. The algological effects of both individual and combined EMR MM and EMS were demonstrated. It was shown that EMR MM has an antinociceptive property when combined with EMS, as well as a modulation effect caused by shielding during hyperalgesia. At the same time, shielding reduces the antinociceptive effect of EMR MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCE

  1. V. V. Parin, Kosm. Biol. Med. 2 (1), 3 (1968).

    Google Scholar 

  2. R. Sandyk, Int. J. Neurosci. 77 (304), 243 (1994).

    Article  Google Scholar 

  3. S. Qin, J. M. Evans, and W. S. Yamanashi, Neuromodulation 8, 79 (2005).

    Article  Google Scholar 

  4. V. V. Lednev, in Modeling of Geophysical Processes (Moscow, 2003), pp. 130–136 [in Russian].

    Google Scholar 

  5. E. B. Burlakova, A. A. Kondratov, and E. L. Maltseva, Biophysics (Moscow) 49 (3), 522 (2004).

    Google Scholar 

  6. O. V. Betskii, V. V. Kislov, and N. N. Lebedeva, Millimeter Waves and Living Systems (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  7. N. D. Devyatkov, M. B. Golant, O. V. Betskii, Specific Features of Biomedical Applications of Millimeter Waves (Moscow, 1994) [in Russian].

    Google Scholar 

  8. A. A. Radzievsky, O. V. Gordiienko, and S. Alekseev, Bioelectromagnetics 29, 284 (2008).

    Article  Google Scholar 

  9. E. N. Chuyan, N. A. Temuryants, O. B. Moskovchuk, et al., Physiological Mechanisms of Biological Effects of EHF EMR (Elinio, Simferopol, 2003) [in Russian].

    Google Scholar 

  10. E. N. Chuyan and E. R. Dzheldubaeva, Mechanisms of Antinociceptive Action of Low-Intensity Millimeter Radiation (DIAIPI, Simferopol, 2006) [in Russian].

    Google Scholar 

  11. S. I. Alekseev, O. V. Gordiienko, and A. A. Radzievsky, Bioelectromagnetics 31, 180 (2010).

    Google Scholar 

  12. S. A. Eccles, Curr. Opin. Genet. Dev. 15 (1), 77 (2005).

    Article  Google Scholar 

  13. D. Wang, Z. G. Liu, J. Zhao, et al., Sci. Rep. 7 (1), 11346 (2017).

    Article  ADS  Google Scholar 

  14. M. Asashima, K. Shimada, and C. J. Pfeiffer, Bioelectromagnetics 12 (4), 215 (1991).

    Article  Google Scholar 

  15. K. A. Jenrow, C. H. Smith, and A. R. Liboff, Bioelectromagnetics 17, 467 (1996).

    Article  Google Scholar 

  16. A. M. Koziak, D. Desjardins, and L. D. Keenliside, Bioelectromagnetics 27, 10 (2006).

    Article  Google Scholar 

  17. A. Gulati, S. Bhalla, G. Matwyshyn, et al., Pharmacology 83, 45 (2011).

    Article  Google Scholar 

  18. F. Xu, B. Zhang, and T. Li, Pharmacology 27 (4), 427 (2013).

    Google Scholar 

  19. A. N. Mironov, A. D. Bunatyan, A. N. Vasil’ev, et al., Guidelines for Preclinical Trials of Pharmaceutical Products (Grif i K, Moscow, 2012) [in Russian].

    Google Scholar 

  20. L. A. Severyanova, I. I. Bobyntsev, M. E. Dolgintsev, and N. A. Kiryanova, Chelovek i Ego Zdorov’e (Kursk), No. 2, 44 (2005).

  21. F. S. Prato, J. A. Robertson, D. Desjardins, et al., Bioelectromagnetics 26 (2), 109 (2005).

    Article  Google Scholar 

  22. N. A. Temuryants, E. N. Chuyan, A. S. Kostyuk, et al., Effects of Low-Intensity Electromagnetic Factors in Invertebrates (Regeneration in Planarians, Nociception inMollusks) (Tavrida National Univ., Simferopol, 2012) [in Russian].

    Google Scholar 

  23. A. W. Thomas, M. Kavaliers, F. S. Prato, et al., Peptides 18, 703 (1997).

    Article  Google Scholar 

  24. E. N. Chuyan, N. A. Temuryants, O. B. Moskovchuk, et al., Physiological Mechanisms of Biological Effects of EHF EMR Elinio, Simferopol, 2003) [in Russian].

    Google Scholar 

  25. E.B. Arashunyan, Russ. Med. Zh. 13 (26), 1755 (2005)

    Google Scholar 

  26. R. J. Reiter, D. X. Tan, B. Poeggeler, et al., Bioelectromagnetics 19 (5), 318 (1998).

    Article  Google Scholar 

  27. S. R. Srinivasan and G. S. Berenson, Lancet 358 (9298), 2012 (2001).

    Article  Google Scholar 

Download references

Funding

This study was supported within the initiative part of the federal program of the Minister of Science and Education of Russian Federation: Temporal Organization of Human and Animal Physiological Systems: Phenomenology and Mechanisms of Generation and Regulation of micro- and meso-rhythms (project no. 6.5452.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Chuyan.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Statement on the welfare of animals. This study was performed in accordance with GOST R-53434-2009 of Basics of Relevant Laboratory Practice and rules of the European Convention for the protection of vertebrate animals used for experimental and other scientific purposes.

Additional information

Translated by A. Boutanaev

Abbreviations: EMR is electromagnetic radiation; EMR MM is millimeter-wavelength electromagnetic radiation; EMS is electromagnetic shielding; PRLtft ispain response latency in a tail-flick test; Fpul is mechanical pain threshold; PRLhpt is pain response latency in a hot plate test.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuyan, E.N., Dzheldubaeva, E.R. & Tribrat, N.S. The Effects of Low-Intensity Millimeter-Wavelength Radiation and Electromagnetic Shielding on Pain Sensitivity in Rats. BIOPHYSICS 65, 505–513 (2020). https://doi.org/10.1134/S0006350920030033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920030033

Navigation