Skip to main content
Log in

A review on the role of nanomaterials in the removal of organic pollutants from wastewater

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Water scarcity will be the prime threat to the millions of the human race across the globe in the future. In the recent report of WHO, about 50% of people will sustain their livings in the water-stressed zones by 2025. As every industrial sector are demanding clean water resource, it is the high time for the development of reliable strategies to recycle the wastewater efficiently. With the conventional techniques, the supply of resources with an exponential increase in the demand is highly challenging. Hence, the alternative, sustainable, and technologically advanced wastewater treatment processes need to be employed instantaneously to compete for the pace. One such promising approach is the use of nano-sized materials with the high surface area and increased surface reactivity in the removal of pollutants from the wastewater. These nanomaterials possess unique properties than their bulk forms enabled the researchers from the various fields to exploit their use in the wastewater treatment processes. As a result, multidisciplinary researches targeting water pollution has increased manifold in recent decades. For instance, the nanomaterials assisted photo-catalysis, membrane filtration, and adsorption processes showed effective results in the removal of organic dyes, heavy metal ions, oil spills, and hydrocarbons, etc. The intrinsic physicochemical, electrical, magnetic properties, and the ease of tailor-made functionalization of nanomaterials identified them as one of the most potent candidates in the water technology. However, the specified challenges such as material toxicity, stability, recovery, fouling, etc. are existing in the use of nanomaterials and several successful innovations are prospering to counteract them in recent years. With such high intentness of these nano-sized materials, the present chapter provides a comprehensive report on the pivotal researches made on the wastewater treatment processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel Ghafar HH, Ali GA, Fouad OA, Makhlouf SA (2015) Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Desalin Water Treat 53(11):2980–2989

    CAS  Google Scholar 

  • Abdullah N, Yusof N, Lau WJ, Jaafar J, Ismail AF (2019) Review: Recent trends of heavy metal removal from water/wastewater by membrane technologies. J Ind Eng Chem 76:17–38

    CAS  Google Scholar 

  • Adeleye AS, Conway JR, Garner K, Huang Y, Su Y, Keller AA (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662

    CAS  Google Scholar 

  • Ahamad T, Naushad M, Eldesoky GE, Al-Saeedi SI, Nafady A, Al-Kadhi NS, Khan A (2019) Effective and fast adsorptive removal of toxic cationic dye (MB) from aqueous medium using amino-functionalized magnetic multiwall carbon nanotubes. J Mol Liq 282:154–161

    CAS  Google Scholar 

  • Ahmadpour A, Zare M, Behjoomanesh M, Avazpour M (2015) Photocatalytic decolorization of methyl orange dye using nano-photocatalysts. Adv Environ Technol 3:121–127

    Google Scholar 

  • Ahmed SN, Haider W (2018) Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology 29:342001

    Google Scholar 

  • Ali W, Ullah H, Zada A, Alamgir MK, Ahmad WMMJ, Nadhman A (2018) Effect of calcination temperature on the photoactivities of ZnO/SnO2 nanocomposites for the degradation of methyl orange, 2018. Mater Chem Phys 213:259–266

    CAS  Google Scholar 

  • Ali N, Zada A, Zahid M, Ismail A, Rafiq M, Riaz A, Khan A (2019a) Enhanced photodegradation of methylene blue with alkaline and transition–metal ferrite nanophotocatalysts under direct sun light irradiation. J Chin Chem Soc 66(4):402–408

    CAS  Google Scholar 

  • Ali I, Ghamdi KA, Wadaani FTA (2019b) Advances in iridium nano catalyst preparation, characterization and applications. J Mol Liq 280:274–284

    CAS  Google Scholar 

  • Almashhori K, Ali TA, Saeed A, Alwafi R, Aly M, Al-Hazmi FE (2020) Antibacterial and photocatalytic activities of controllable (anatase/rutile) mixed phase TiO2 nanophotocatalysts synthesized via a microwave-assisted sol–gel method. New J Chem 44:562–570

    CAS  Google Scholar 

  • Alqadami A, Naushad M, Abdalla MA, Khan MR, Alothman ZA (2016) Adsorptive removal of toxic dye using Fe3O4–TSC nanocomposite: equilibrium, kinetic, and thermodynamic studies. J Chem Eng Data 61(11):3806–3813

    Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 825910

  • Ansari MO, Kumar R, Ansari SA, Ansari SP, Barakat MA, Alshahrie A, Cho MH (2017) Anion selective pTSA doped polyaniline@graphene oxide-multiwalled carbon nanotube composite for Cr(VI) and Congo red adsorption. J Colloid Interface Sci 496:407–415

    CAS  Google Scholar 

  • Arabi SMS, Lalehloo RS, Olyai MRTB, Ali GA, Sadegh H (2019) Removal of congo red azo dye from aqueous solution by ZnO nanoparticles loaded on multiwall carbon nanotubes. Phys E Low Dimens Syst Nanostruct 106:150–155

    Google Scholar 

  • Araghi SH, Entezari MH (2015) Amino-functionalized silica magnetite nanoparticles for the simultaneous removal of pollutants from aqueous solution. Appl Surf Sci 333:68–77

    Google Scholar 

  • Arunachalam T, Karpagasundaram M, Rajarathinam N (2017) Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical and antibacterial properties. Mater Sci Poland 35(4):791–798

    CAS  Google Scholar 

  • Askari N, Farhadian M, Razmjou A (2015) Decolorization of ionic dyes from synthesized textile wastewater by nanofiltration using response surface methodology. Adv Environ Technol 2:85–92

    Google Scholar 

  • Askari N, Farhadian M, Razmjou A, Hashtroodi H (2016) Nanofiltration performance in the removal of dye from binary mixtures containing anthraquinone dyes. Desalin Water Treat 57(39):18194–18201. https://doi.org/10.1080/19443994.2015.1090917

    Article  CAS  Google Scholar 

  • Asmatulu R, Muppalla H, Veisi Z, Khan WS, Asaduzzaman A, Nuraje N (2013) Study of hydrophilic electrospun nanofiber membranes for filtration of micro and nanosize suspended particles. Membranes 3(4):375–388

    Google Scholar 

  • Atta AM, Al-Hodan HA, Al-Hussain SA, Ezzat AO, Tawfik AM, El-Dosary YA (2016) Preparation of magnetite and manganese oxide ionic polymer nanocomposite for adsorption of a textile dye in aqueous solutions. Digest J Nanomater Biostruct 11(3):909–919

    Google Scholar 

  • Azamat J, Sattary BS, Khataee A, Joo SW (2015) Removal of a hazardous heavy metal from aqueous solution using functionalized graphene and boron nitride nanosheets: insights from simulations. J Mol Graph Model 61:13–20

    CAS  Google Scholar 

  • Babursah S, Cakmakci M, Kinaci C (2006) Analysis and monitoring: costing textile effluent recovery and reuse. Filtr Sep 43(5):26–30

    Google Scholar 

  • Bali U, Catalkaya EC, Sengul F (2003) Photochemical degradation and mineralization of phenol: a comparative study. J Environ Sci Health 38:2259–2275

    Google Scholar 

  • Baruah S, Khan MN, Dutta J (2016) Perspectives and applications of nanotechnology in water treatment. Environ Chem Lett 14:1–14

    CAS  Google Scholar 

  • Bassyouni M, Abdel-Aziz MH, Zoromba MS, Abdel Hamid SMS, Drioli E (2019) A review of polymeric nanocomposite membranes for water purification. J Ind Eng Chem 73:19–46

    CAS  Google Scholar 

  • Bazrafshan E, Mostafapour FK, Hosseini AR, Raksh Khorshid A, Mahvi AH (2013) Decolorisation of reactive red 120 dye by using single-walled carbon nanotubes in aqueous solutions. J Chem. https://doi.org/10.1155/2013/938374

    Article  Google Scholar 

  • Bello NT, Polezhaev P, Vobecká L, Slouka Z (2019) Fouling of a heterogeneous anion-exchange membrane and single anion-exchange resin particle by ssdna manifests differently. J Membr Sci 572:619–631

    Google Scholar 

  • Bhanvase BA, Shende TP, Sonawane SH (2017) A review on graphene-TiO2 and doped graphene-TiO2 nanocomposite photocatalyst for water and wastewater treatment. Environ Technol Rev 6:1–14

    CAS  Google Scholar 

  • Bhatia D, Sharma NR, Singh J, Kanwar RS (2017) Biological methods for textile dye removal from wastewater: a review. Crit Rev Environ Sci Technol 47:1836–1876

    CAS  Google Scholar 

  • Blanco J, Torrades F, De la Varga M, Garcıa-Montano J (2012) Fenton and biological-Fenton coupled processes for textile wastewater treatment and reuse. Desalination 286:394–399

    CAS  Google Scholar 

  • Briggs AM, Cross MJ, Hoy DG, Blyth FH, Woolf AD, March L (2016) Musculoskeletal health conditions represent a global threat to healthy aging: a report for the 2015 world health organization world report on ageing and health. Gerontologist 56:243–255

    Google Scholar 

  • Brumfiel G (2003) Nanotechnology: a little knowledge. Nature 424:246–248

    CAS  Google Scholar 

  • Burkhard R, Deletic A, Craig A (2000) Techniques for water and wastewater management: a review of techniques and their integration in planning. Urban Water 2(3):197–221

    CAS  Google Scholar 

  • Buscio V, García-Jiménez M, Vilaseca M, López-Grimau V, Crespi M, Gutiérrez-Bouzán C (2016) Reuse of textile dyeing effluents treated with coupled nanofiltration and electrochemical processes. Materials 9:490. https://doi.org/10.3390/ma9060490

    Article  CAS  Google Scholar 

  • Cao C, Xiao L, Chen C, Shi X, Cao Q, Gao L (2014) In situ preparation of magnetic Fe3O4/chitosan nanoparticles via a novel reduction–precipitation method and their application in adsorption of reactive azo dye. Powder Technol 260:90–97

    CAS  Google Scholar 

  • Catalkaya EC, Bali U, Sengul F (2003) Photochemical degradation and mineralization of 4-chlorophenol. Environ Sci Pollut Res Int 10:113–120

    CAS  Google Scholar 

  • Chang J, Ma J, Ma Q, Zhang D, Qiao N, Hu M, Ma H (2016) Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite. Appl Clay Sci 119:132–140

    CAS  Google Scholar 

  • Charee SW, Aravinthan V, Erdei L, Raj WS (2017) Use of macadamia nut shell residues as magnetic nanosorbents. Int Biodeter Biodegrad 124:276–287

    Google Scholar 

  • Chawla S, Uppal H, Yadav M, Bahadur N, Singh N (2017) Zinc peroxide nanomaterial as an adsorbent for removal of Congo red dye from waste water. Ecotoxicol Environ Saf 135:68–74

    CAS  Google Scholar 

  • Che HX, Yeap SP, Ahmad AL, Lim J (2014) Layer-by-layer assembly of iron oxide magnetic nanoparticles decorated silica colloid for water remediation. Chem Eng J 243:68–78

    CAS  Google Scholar 

  • Chen H, Li J, Shao D, Ren X, Wang X (2012) Poly(acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(II) removal from aqueous solution. Chem Eng J 210:475–481

    CAS  Google Scholar 

  • Chen J, Sheng Y, Song Y, Chang M, Zhang X, Cui L, Zou H (2018) Multimorphology mesoporous silica nanoparticles for dye adsorption and multicolor luminescence applications. Sustain Chem Eng 6:3533–3545

    CAS  Google Scholar 

  • Chen W, Liu Q, Tian S, Zhao X (2019) Exposed facet dependent stability of ZnO micro/nano crystals as a photocatalyst. Appl Surf Sci 470:807–816

    CAS  Google Scholar 

  • Chi Q, Wang Z, Tian F, You JA, Xu S (2018) A review of fast bubble-driven micromotors powered by biocompatible fuel: low-concentration fuel, bioactive fluid and enzyme. Micromachine 9:537

    Google Scholar 

  • Choi JH, Cockko S, Fukushi K, Yamamoto K (2002) A novel application of a submerged nanofiltration membrane bioreactor (NFMBR) for wastewater treatment. Desalination 146(5):413–420

    CAS  Google Scholar 

  • Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    CAS  Google Scholar 

  • Daer S, Kharraz J, Giwa A, Hasan SW (2015) Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination 367:37–48

    CAS  Google Scholar 

  • Dar AA, Umar K, Mir NA, Haque MM, Muneer M, Boxall C (2011) Photocatalysed degradation of an herbicide derivative, Dinoterb, in aqueous suspension. Res Chem Intermed. 37:567–578

    CAS  Google Scholar 

  • Dehghani MH, Niasar ZS, Mehrnia MR, Shayeghi M, Al-Ghouti MA, Heibati B, Yetilmezsoy K (2017) Optimizing the removal of organophosphorus pesticide malathion from water using multi-walled carbon nanotubes. Chem Eng J 310:22–32

    CAS  Google Scholar 

  • Dekker C (2007) Solid-statenanopores. Nat Nanotechnol 2:209–215

    CAS  Google Scholar 

  • Dong Z, Zhang F, Wang D, Liu X, Jin J (2015) Polydopaminemediated surface-functionalization of graphene oxide for heavy metal ions removal. J Solid State Chem 224:88–93

    CAS  Google Scholar 

  • Duman O, Tunc S, Polat TG, Bozoğlan BK (2016) Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic methylene blue dye adsorption. Carbohydr Polym 147:79–88

    CAS  Google Scholar 

  • Dutta AK, Maji SK, Adhikary B (2014) C-Fe2O3 nanoparticles: an easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant. Mater Res Bull 49:28–34

    CAS  Google Scholar 

  • Edelstein AS, Cammaratra RC (1998) Nanomaterials: synthesis, properties and applications. CRC Press, London

    Google Scholar 

  • El Saliby IJ, Shon H, Kandasamy J, Vigneswaran S (2008) Nanotechnology for wastewater treatment: in brief. In: Encyclopedia of life support system (EOLSS)

  • Escudero-Oñate C, Martínez-Francés E (2018) A review of chitosan-based materials for the removal of organic pollution from water and bioaugmentation. Chitin-Chitosan Myriad Function Sci Technol. https://doi.org/10.5772/intechopen.76540

    Article  Google Scholar 

  • Eskandari P, Farhadian M, Nazar ARS, Jeon BH (2019) Adsorption and photodegradation efficiency of TiO2/Fe2O3/PAC and TiO2/Fe2O3/zeolite nanophotocatalysts for the removal of cyanide. Ind Eng Chem Res 58(5):2099–2112

    CAS  Google Scholar 

  • Faccini M, Borja G, Boerrigter M, Martin DM, Crespiera SM, Vazquez-Campos S, Amantia D (2015) Electrospun carbon nanofiber membranes for filtration of nanoparticles from water. J Nanomater 2:1–9

    Google Scholar 

  • Fan L, Luo C, Sun M, Qiu H, Li X (2013) Synthesis of magnetic β-cyclodextrin–chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids Surf B 103:601–607

    CAS  Google Scholar 

  • Fang X, Li J, Li X, Pan S, Zhang X, Sun X, Han JSW, Wang L (2017) Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal. Chem Eng 314:38–49

    CAS  Google Scholar 

  • Ferroudj N, Nzimoto J, Davidson A, Talbot D, Briot E, Dupuis V, Abramson S (2013) Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants. Appl Catal B Environ 136:9–18

    Google Scholar 

  • Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64–75

    CAS  Google Scholar 

  • Gao H, Zhao S, Cheng X, Wang X, Zheng L (2013) Removal of anionic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent. Chem Eng J 223:84–90

    CAS  Google Scholar 

  • Garcia-Torres J, Serra A, Tierno P, Alcobe X, Valles E (2017) Magnetic propulsion of recyclable catalytic nanocleaners for pollutant degradation. ACS Appl Mater Interfaces 9:23859–23868

    CAS  Google Scholar 

  • Ghani M, Gharehaghaji AA, Arami M, Takhtkuse N, Rezaei B (2014) Fabrication of electrospun polyamide-6/chitosan nanofibrous membrane toward anionic dyes removal. J Nanotechnol. https://doi.org/10.1155/2014/278418

    Article  Google Scholar 

  • Gitis V, Hankins N (2018) Water treatment chemicals: trends and challenges. J Water Process Eng 25:34–38

    Google Scholar 

  • Gómez-Pastora J, Dominguez S, Bringas E, Rivero MJ, Ortiz I, Dionysiou DD (2017) Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem Eng J 310:407–427

    Google Scholar 

  • Gopalakrishnan I, Samuel SR, Sridharan K (2018) Nanomaterials-based adsorbents for water and waste water treatment. Emerg Nanotechnol Environ Sustain 6:89–98

    Google Scholar 

  • Grey D, Garrick D, Blackmore D, Kelman J, Muller M, Sadoff C (2013) Water security in one blue planet: twenty-first century policy challenges for science. Philos Trans R Soc Lond A Math Phys Eng Sci 371:20120406

    CAS  Google Scholar 

  • Gubin SP, Koksharov YA, Khomutov GB, Yurkov GYE (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74:489–520

    CAS  Google Scholar 

  • Guix M, Orozco J, García M et al (2012) Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano 6(5):4445–4451

    CAS  Google Scholar 

  • Gunawan FM, Mangindaan D, Khoiruddin K, Wenten IG (2019) Nanofiltration membrane cross-linked by m-phenylenediamine for dye removal from textile wastewater. Polym Adv Technol 30(2):360–367

    CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011) Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater 185:17–23

    CAS  Google Scholar 

  • Gupta VK, Tyagi I, Sadegh H, Shahryari-Ghoshekand R, Makhlouf ASH, Maazinejad B (2015) Nanoparticles as adsorbent: a positive approach for removal of noxious metal ions: a review. Sci Technol Dev 34:195

    Google Scholar 

  • Hajdu I, Bodnar M, Csikos Z, Wei S, Daroczi L, Kovacs B, Borbely J (2012) Combined nano-membrane technology for removal of lead ions. J Membr Sci 409:44–53

    Google Scholar 

  • Hao T, Yang C, Rao X, Wang J, Niu C, Su X (2014) Facile additive-free synthesis of iron oxide nanoparticles for efficient adsorptive removal of Congo red and Cr(VI). Appl Surf Sci 292:174–180

    CAS  Google Scholar 

  • Hassan AR, Rozali S, Safari NHM, Besar BH (2018) The roles of polyethersulfone and polyethylene glycol additive on nanofiltration of dyes and membrane morphologies. Environ Eng Res 23(3):316–322

    Google Scholar 

  • Heidarizad M, Şengor SS (2016) Synthesis of graphene oxide/magnesium oxide nanocomposites with high-rate adsorption of methylene blue. J Mol Liq 224:607–617

    CAS  Google Scholar 

  • Hilal N, Al-Zoubi H, Darwish NA, Mohamma AW, Arabi MA (2004) A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy. Desalination 170(3):281–308

    CAS  Google Scholar 

  • Hirata K, Watanabe H, Kubo W (2019) Nanomembranes as a substrate for ultra-thin lightweight devices. Thin Solid Film 676:8–11

    CAS  Google Scholar 

  • Hodges BC, Cates EL, Kim J (2018) Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterial. Nat Nanotechnol 13:642–650

    CAS  Google Scholar 

  • Hogen-Esch T, Pirbazari M, Ravindran V, Yurdacan HM, Kim W (2019) High performance membranes for water reclamation using polymeric and nanomaterials. U.S. patent no. 20160038885A, 29 October 2019

  • Ibrahim RK, Hayyan M, Al-saadi MA, Hayyan A, Ibrahim S (2016) Environmental application of nanotechnology; air, soil, and water. Environ Sci Pollut. 23:13754–13788

    CAS  Google Scholar 

  • Ihsanullah Al-Khaldi FA, Abusharkh B, Khaled M, Atieh MA, Nasser MS, Saleh TA, Agarwal S, Tyagi I, Gupta VK (2015) Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents. J Mol Liq 204:255–263

    CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  • Inyang M, Gao B, Zimmerman A, Zhang M, Chen H (2014) Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites. Chem Eng J 236:39–46

    CAS  Google Scholar 

  • Istratie R, Stoia M, Păcurariu C, Locovei C (2016) Single and simultaneous adsorption of methyl orange and phenol onto magnetic iron oxide/carbon nanocomposites. Arab J Chem 12(8):3704–3722

    Google Scholar 

  • Jawed A, Saxena V, Pandey LM (2020) Engineered nanomaterials and their surface functionalization for the removal of heavy metals: a review. J Water Process Eng 33:101009

    Google Scholar 

  • Jeelani PG, Mulay P, Venkat R (2019) Multifaceted application of silica nanoparticles. A review. Silicon. 10.1007/s12633-019-00229-y

  • Jeni J, Kanmani S (2011) Solar nanophotocatalytic decolorisation of reactive dyes using titanium dioxide Iran. J Environ Health Sci Eng 8(1):15–24

    CAS  Google Scholar 

  • Jurado-Sánchez B, Wang J (2018) Micromotors for environmental applications: a review. Environ Sci Nano 5:1530–1544

    Google Scholar 

  • Jurado-Sánchez B, Sattayasamitsathit S, Gao W et al (2015) Self-propelled activated carbon Janus micromotors for efficient water purification. Small 11(4):499–506

    Google Scholar 

  • Kadam A, Lee DS (2015) Glutaraldehyde cross-linked magnetic chitosan nanocomposites: reduction precipitation synthesis, characterization, and application for removal of hazardous textile dyes. Bioresour Technol 193:563–567

    CAS  Google Scholar 

  • Kalfa OM, Yalcınkaya O, Turker AR (2009) Synthesis of nano B2O3/TiO2 composite material as a new solid phase extractor and its application to preconcentration and separation of cadmium. J Hazard Mater 166:455–461

    CAS  Google Scholar 

  • Kalhapure RS, Sonawane SJ, Sikwal DR (2015) Solid lipid nanoparticles of clotrimazole silver complex: an efficient nano antibacterial against Staphylococcus aureus and MRSA. Colloid Surf B 136:651–658

    CAS  Google Scholar 

  • Kamil AM, Mohammed HT, Alkaim AF, Hussein FH (2016) Adsorption of Congo red on multiwall carbon nanotubes: effect of operational parameters. J Chem Pharm Sci 9:1128–1133

    CAS  Google Scholar 

  • Kang D, Yu X, Ge M, Xiao F, Xu H (2017) Novel Al-doped carbon nanotubes with adsorption and coagulation promotion for organic pollutant removal. J Environ Sci 54:1–12

    Google Scholar 

  • Kanmani S, Sundar KP (2020) Progression of photocatalytic reactors and its comparison: a review. Chem Eng Res Des 154:135–150

    Google Scholar 

  • Kansal SK, Kaur N, Singh S (2009) Photocatalytic degradation of two commercial reactive dyes in aqueous phase using nanophotocatalysts. Nanoscale Res Lett 4:709. https://doi.org/10.1007/s11671-009-9300-3

    Article  CAS  Google Scholar 

  • Karthika T, Thirunavukkarasu A, Ramesh S (2010) Biosorption of copper from aqueous solutions using Tridax procumbens. Recent Res Sci Technol 2(3):86–91

    CAS  Google Scholar 

  • Khan I, Farhan M, Singh P, Thiagarajan P (2014) Nanotechnology for environmental remediation. Res J Pharm Biol Chem Sci 5(3):1916–1927

    Google Scholar 

  • Khezrianjoo S, Lee J, Kim KH, Kumar V (2019) Eco-toxicological and kinetic evaluation of TiO2 and ZnO nanophotocatalysts in degradation of organic dye. Catalysts 9:871. https://doi.org/10.3390/catal9100871

    Article  CAS  Google Scholar 

  • Khulbe KC, Matsuura T (2018) Removal of heavy metals and pollutants by membrane adsorption techniques. Appl Water Sci 8:19. https://doi.org/10.1007/s13201-018-0661-6

    Article  CAS  Google Scholar 

  • Kootenaei FG, Rad HA (2013) Treatment of hospital wastewater by novel nano-filtration membrane bioreactor (NF-MBR). Iran J Energy Environ 4(1):60–67

    Google Scholar 

  • Kumar KY, Muralidhara HB, Nayaka YA, Balasubramanyam J, Hanumanthappa H (2013) Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol 246:125–136

    CAS  Google Scholar 

  • Kurian M, Nair DS (2015) Heterogeneous Fenton behavior of nano nickel zinc ferrite catalysts in the degradation of 4-chlorophenol from water under neutral conditions. J Water Process Eng 8:37–49

    Google Scholar 

  • Kyzas GZ, Matis KA (2015) Nanoadsorbents for pollutants removal: a review. J Mol Liq 203:159–168

    CAS  Google Scholar 

  • Lau WJ, Ismail A (2009) Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control—a review. Desalination 245:321–348

    CAS  Google Scholar 

  • Lee CS, Gong J, Oh DS, Jeon JR, Chang YS (2018) Zerovalent-iron/platinum janus micromotors with spatially separated functionalities for efficient water decontamination. ACS Appl Nano Mater 1(2):768–776

    CAS  Google Scholar 

  • Li DP, Zhang YR, Zhao XX, Zhao BX (2013) Magnetic nanoparticles coated by aminoguanidine for selective adsorption of acid dyes from aqueous solution. Chem Eng J 232:425–433

    CAS  Google Scholar 

  • Li Y, Zhou Y, Nie W, Song L, Chen P (2015) Highly efficient methylene blue dyes removal from aqueous systems by chitosan coated magnetic mesoporous silica nanoparticles. J Porous Mater 22:1383–1392

    CAS  Google Scholar 

  • Li X, Lu H, Zhang Y, He F (2017) Efficient removal of organic pollutants from aqueous media using newly synthesized polypyrrole/CNTs-CoFe2O4 magnetic nanocomposites. Chem Eng J 316:893–902

    CAS  Google Scholar 

  • Li X, Mou F, Guo J, Deng Z, Chen C, Xu L, Luo M, Guan J (2018) Hydrophobic Janus foam motors: self-propulsion and on-the-fly oil absorption. Micromachines 9:23

    Google Scholar 

  • Liang J, Liu J, Yuan X, Dong H, Zeng G, Wu H, Wang H, Liu J, Hua S, Zhang S, Yu Z (2015) Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chem Eng J 273:101–110

    CAS  Google Scholar 

  • Liang X, Cui S, Li H, Abdelhady A, Wang H, Zhou H (2019) Removal effect on stormwater runon pollution of porous concrete treated with nanometre titanium dioxide. Transp Res Desalin 73:34–45

    Google Scholar 

  • Lin WY, Wang Y, Wang S, Tseng HR (2009) Integrated microfluidic reactors. Nano Today 4:470–481

    CAS  Google Scholar 

  • Lingamdinne LP, Koduru JR, Roh H, Choi YL, Chang YY, Yang JK (2016) Adsorption removal of Co(II) from waste-water using graphene oxide. Hydrometallurgy 165:90–96

    CAS  Google Scholar 

  • Liu S, Wang Y, Zhou Z, Hana W, Li J, Shen J, Wang I (2017) Improved degradation of the aqueous flutriafol using a nanostructure microporous PbO2 as reactive electrochemical membrane. Electrochim Acta 253:357–367

    CAS  Google Scholar 

  • Lodo MJ, Diaz LJ (2019) Reusability of Fe-modified MMT nanomembranes and the retrieval of the adsorbed mercury metal. Earth Environ Sci 345:012011. https://doi.org/10.1088/1755-1315/345/1/012011

    Article  Google Scholar 

  • Loeb SK, Alvarez PJ, Brame JA, Cates EL, Choi W, Crittenden J, Dionysiou DD, Li Q, Li-Puma G, Quan X et al (2019) The technology horizon for photocatalytic water treatment: sunrise or sunset? Environ Sci Technol 53:2937–2947

    CAS  Google Scholar 

  • Long YL, Yu JG, Jiao FP, Yang W (2016) Preparation and characterization of MWCNTs/LDHs nanohybrids for removal of Congo red from aqueous solution. J Trans Nonferrous Met Soc China 26:2701–2710

    CAS  Google Scholar 

  • Long Q, Zhang Z, Qi G, Wang Z, Chen Y, Liu ZQ (2020) Fabrication of chitosan nanofiltration membranes by the film casting strategy for effective removal of dyes/salts in textile wastewater. ACS Sustain Chem Eng 8(6):2512–2522

    CAS  Google Scholar 

  • Lonkar SP, Pillai VV, Alhassan SM (2018) Facile and scalable production of heterostructured ZnS–ZnO/graphene nano-photocatalysts for environmental remediation. Sci Rep 8:13401. https://doi.org/10.1038/s41598-018-31539-7

    Article  CAS  Google Scholar 

  • Lu F, Astruc D (2020) Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord Chem Rev 408:213180

    CAS  Google Scholar 

  • Lubick N, Betts K (2008) Silver socks have cloudy lining| Court bans widely used flame retardant. Environ Sci Technol 42(11):3910

    CAS  Google Scholar 

  • Ma H, Wang H, Na C (2015) Microwave-assisted optimization of platinum–nickel nanoalloys for catalytic water treatment. Appl Catal B Environ 163:198–204

    CAS  Google Scholar 

  • Macoun RG (1998) The mechanisms of ionic rejection in nanofiltration. Chemical Engineering, Ph.D. thesis. University of New South Wales, Sydney, Australia

  • Madrakian T, Afkhami A, Ahmadi M, Bagheri H (2011) Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J Hazard Mater 196:109–114

    CAS  Google Scholar 

  • Mahapatra A, Mishra BG, Hota G (2013) Adsorptive removal of Congo red dye from wastewater by mixed iron oxide–alumina nanocomposites. Ceram Int 39(5):5443–5451

    CAS  Google Scholar 

  • Mahmoodi NM, Arami M (2009) Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. J Photochem Photobiol B 94:20–24

    CAS  Google Scholar 

  • Mahmoodi NM, Maghsoodi A (2015) Kinetics and isotherm of cationic dye removal from multicomponent system using the synthesized silica nanoparticle. Desalin Water Treat 54:562–571

    CAS  Google Scholar 

  • Mahmoodi NM, Maghsoudi A, Najafi F, Jalili M, Kharrati H (2014) Primary–secondary amino silica nanoparticle: synthesis and dye removal from binary system. Desalin Water Treat 52:7784–7796

    CAS  Google Scholar 

  • Mahmoodian H, Moradi O, Shariatzadeha B, Salehf TA, Tyagi I, Maity A (2015) Enhanced removal of methyl orange from aqueous solutions by poly HEMA–chitosan-MWCNT nano-composite. J Mol Liq 202:189–198

    CAS  Google Scholar 

  • Majd S (2010) Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr Opin Biotechnol 21:439–476

    CAS  Google Scholar 

  • Malik A, Hameed S, Siddiqui MJ, Haque MM, Umar K, Khan A, Muneer M (2014) Electrical and optical properties of nickel-and molybdenum-doped titanium dioxide nanoparticle: improved performance in dye-sensitized solar cells. J Mater Eng Perform 23:3184–3192

    CAS  Google Scholar 

  • Malini B, Allen Gnana Raj G (2018) Synthesis, characterization and photocatalytic activity of cobalt doped TiO2 nanophotocatalysts for rose bengal dye degradation under day light illumination. Chem Sci Trans 7(4):687–695

    CAS  Google Scholar 

  • Manikam MK, Halim AA, Hanafiah MM, Krishnamoorthy RR (2019) Removal of ammonia nitrogen, nitrate, phosphorus and COD from sewage wastewater using palm oil boiler ash composite adsorbent. Desalin Water Treat 149:23–30

    CAS  Google Scholar 

  • Maphutha S, Moothi K, Meyyappan M, Iyuke SE (2013) A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water. Sci Rep 3:1509. https://doi.org/10.1038/srep01509

    Article  CAS  Google Scholar 

  • Massoudinejad M, Rasoulzadeh H, Ghaderpoori M (2019) Magnetic chitosan nanocomposite: fabrication, properties, and optimization for adsorptive removal of crystal violet from aqueous solutions. Carbohydr Polym 206:844–853

    CAS  Google Scholar 

  • McNaught AD, Wilkinson A (1997) IUPAC gold book. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Mehrabi M, Javanbakht V (2018) Photocatalytic degradation of cationic and anionic dyes by a novel nanophotocatalyst of TiO2/ZnTiO3/αFe2O3 by ultraviolet light irradiation. J Mater Sci Mater Electron 29:9908–9919

    CAS  Google Scholar 

  • Mekaru H, Lu J, Tamanoi F (2015) Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv Drug Deliv Rev 95:40–49

    CAS  Google Scholar 

  • Mir NA, Haque MM, Khan A, Umar K, Muneer M, Vijayalakshmi S (2012) Semiconductor mediated photocatalysed reaction of two selected organic compounds in aqueous suspensions of titanium dioxide. J Adv Oxid Technol 15:380–391

    CAS  Google Scholar 

  • Mir NA, Khan A, Umar K, Muneer M (2013) Photocatalytic study of a xanthene dye derivative, phloxine B in aqueous suspension of TiO2: adsorption isotherm and decolourization kinetics. Energy Environ Focus 2:208–216

    Google Scholar 

  • Mohammadi A, Daemi H, Barikani M (2014) Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles. Int J Biol Macromol 69:447–455

    CAS  Google Scholar 

  • Moradi O (2013) Adsorption behavior of basic red 46 by single-walled carbon nanotubes surfaces. Fullerenes Nanotubes Carbon Nanostruct 21:286–301

    CAS  Google Scholar 

  • Mou FZ, Pan D, Chen CR, Gao YR, Xu LL, Guan JG (2015) Magnetically modulated pot-like MnFe2O4 micromotors: nanoparticle assembly fabrication and their capability for direct oil removal. Adv Funct Mater 25:6173–6181

    CAS  Google Scholar 

  • Mushtaq F, Asani A, Hoop M, Chen XZ, Ahmed D, Nelson BJ, Pane S (2016) Highly efficient coaxial TiO2–PtPd tubular nanomachines for photocatalytic water purification with multiple locomotion strategies. Adv Funct Mater 26:6995–7002

    CAS  Google Scholar 

  • Nasreen SAAN, Sundarrajan S, Nizar SAS, Balamurugan R, Ramakrishna S (2013) Advancement in electrospun nanofibrous membranes modification and their application in water treatment. Membranes 3(4):266–284

    Google Scholar 

  • Nekouei F, Nekouei S, Tyagi I, Gupta VK (2015) Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. J Mol Liq 201:124–133

    CAS  Google Scholar 

  • Nithya R, Sivasankari C, Thirunavukkarasu A, Selvasembian R (2018) Novel adsorbent prepared from bio-hydrometallurgical leachate from waste printed circuit board used for the removal of methylene blue from aqueous solution. Microchem J 142:321–328

    CAS  Google Scholar 

  • OECD (Organisation for Economic Co-operation and Development) (2010) List of manufactured nanomaterials and list of endpoints for phase one of the sponsorship programme for the testing of manufactured nanomaterials: revision; series on the safety of manufactured nanomaterials 27. Organisation for Economic Cooperation and Development, Paris

  • Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sustain Energy Rev 81:536–551

    CAS  Google Scholar 

  • Orozco J, Vilela D, Valdes-Ramirez G, Fedorak Y, Escarpa A, Vazquez-Duhalt R, Wang J (2014) Efficient biocatalytic degradation of pollutants by enzyme-releasing self-propelled motors. Chem Eur J 20:2866–2871

    CAS  Google Scholar 

  • Orozco J, Mercante LA, Pol R, Merkoci A (2016) Graphene-based Janus micromotors for the dynamic removal of pollutants. J Mater Chem A 4:3371–3378

    CAS  Google Scholar 

  • Ouyang X, Li W, Xie S, Zhai T, Yu M, Gan J, Lu X (2013) Hierarchical CeO2 nanospheres as highly-efficient adsorbents for dye removal. New J Chem 37(3):585–588

    CAS  Google Scholar 

  • Pacheco M, López MÁ, Jurado-Sánchez B, Escarpa A (2019) Self-propelled micromachines for analytical sensing: a critical review. Anal Bioanal Chem 411:6561–6573

    CAS  Google Scholar 

  • Parrino F, Loddo V, Augugliaro V, Camera-Roda G, Palmisano G, Palmisano L, Yurdakal S (2019) Heterogeneous photocatalysis: guidelines on experimental setup, catalyst characterization, interpretation, and assessment of reactivity. Catal Rev 61:163–213

    CAS  Google Scholar 

  • Pendergast MM, Hoek EM (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4:1946–1971

    CAS  Google Scholar 

  • Petrinic I, Andersen NPR, Sostar-Turk S, Le Marechal AM (2007) The removal of reactive dye printing compounds using nanofiltration. Dyes Pigm 74:512–518

    CAS  Google Scholar 

  • Pirkanniemi K, Sillanpaa M (2002) Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 48:1047–1060

    CAS  Google Scholar 

  • Pourrahimi AM, Pumera M (2018) Multifunctional and self-propelled spherical Janus nano/micromotors: recent advances. Nanoscale 10:16398–16415

    CAS  Google Scholar 

  • Pourrahimi AM, Liu D, Pallon LKH, Andersson RL, Martinez Abad A, Lagaron JM, Hedenqvist MS, Strom V, Gedde UW, Olsson RT (2014) Water-based synthesis and cleaning methods for high purity ZnO nanoparticles—comparing acetate, chloride, sulphate and nitrate zinc salt precursors. RSC Adv 4:35568–35577

    CAS  Google Scholar 

  • Prola LD, Machado FM, Bergmann CP, de Souza FE, Gally CR, Lima EC, Calvete T (2013) Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon. J Environ Manag 130:166–175

    CAS  Google Scholar 

  • Qin P, Yang Y, Zhang X et al (2017) Highly efficient, rapid, and simultaneous removal of cationic dyes from aqueous solution using monodispersed mesoporous silica nanoparticles as the adsorbent. Nanomaterials (Basel) 8(1):4. https://doi.org/10.3390/nano8010004

    Article  CAS  Google Scholar 

  • Qu X, Brame J, Li Q, Alvarez PJ (2012) Nanotechnology for a safe and sustainable water supply: enabling integrated watertreatment and reuse. Acc Chem Res 46(3):834–843

    Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    CAS  Google Scholar 

  • Rahmi Ishmatturahmi, Mustafa I (2019) Methylene blue removal from water using H2SO4 crosslinked magnetic chitosan nanocomposite beads. Microchem J 144:397–402

    CAS  Google Scholar 

  • Rajabi HR, Shahrezaei F, Farsi M (2016) Zinc sulfide quantum dots as powerful and efficient nanophotocatalysts for the removal of industrial pollutant. J Mater Sci Mater Electron 27:9297–9305

    CAS  Google Scholar 

  • Rajarathinam N, Arunachalam T, Raja S, Selvasembian R (2020) Fenalan Yellow G adsorption using surface-functionalized green nanoceria: an insight into mechanism and statistical modelling. Environ Res 181:108920

    CAS  Google Scholar 

  • Raliya SR, Avery C, Chakrabarti S, Biswas P (2017) Photocatalytic degradation of methyl orange dye by pristine TiO2, ZnO, and graphene oxide nanostructures and their composites under visible light irradiation. Appl. Nano Sci 7:253–259

    CAS  Google Scholar 

  • Rao LN (2014) Nanotechnological methodology for treatment of wastewater. Int J Chem Tech Res 6(4):2529

    CAS  Google Scholar 

  • Rashidi HR, Sulaiman NMN, Hashim NA, Hassan CRC, Ramli MR (2015) Synthetic reactive dye wastewater treatment by using nanomembrane filtration. Desalin Water Treat 55(1):86–95

    CAS  Google Scholar 

  • Reddy AVB, Jaafar J, Majid ZA, Aris A, Umar K, Talib J, Madhavi G (2015) Relative efficiency comparison of carboxymethyl cellulose (CMC) stabilized Fe0 and Fe0/Ag nanoparticles for rapid degradation of chlorpyrifos in aqueous solutions. Digest J Nanomater Biostruct 10:331–340

    Google Scholar 

  • Ren X, Chena C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. J Chem Eng 170:395–410

    CAS  Google Scholar 

  • Rezaei H, Razavi A, Shahbazi A (2017) Removal of Congo red from aqueous solutions using nano-chitosan. Environ Resour Res 5:25–34

    Google Scholar 

  • Rohe DL, Blanton TC, Marinas BJ (1990) Drinking water treatment by nanofiltration. National conference on environmental engineering

  • Sadegh H, Shahryari-Ghoshekandi R, Kazemi M (2014) Study in synthesis and characterization of carbon nanotubes decorated by magnetic iron oxide nanoparticles. Int Nano Lett 4:129–135

    CAS  Google Scholar 

  • Sadegh H, Ali GAM, Gupta VK, Makhlouf ASH, Nadagouda MN, Sillanpaa M, Megiel E (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostruct Chem 7:1–14

    CAS  Google Scholar 

  • Sadegh H, Ali GAM, Agarwal S, Gupta VK (2019) Surface modification of MWCNTs with carboxylic-to-amine and their superb adsorption performance. Int J Environ Res 13(3):523–531

    CAS  Google Scholar 

  • Safdar M, Simmchen J, Jänis J (2017) Correction: light-Driven micro-and nanomotors for environmental remediation. Environ Sci Nano 4:2235

    CAS  Google Scholar 

  • Salem ANM, Ahmed MA, El-Shahat MF (2016) Selective adsorption of amaranth dye on Fe3O4/MgO nanoparticles. J Mol Liq 219:780–788

    CAS  Google Scholar 

  • Salimi F, Tahmasobi K, Karami C, Jahangiri A (2017) Preparation of modified nano-SiO2 by bismuth and iron as a novel remover of methylene blue from water solution. J Mex Chem Soc 61:250–259

    CAS  Google Scholar 

  • Samanta HS, Das R, Bhattachajee C (2016) Influence of nanoparticles for wastewater treatment—a short review. Austin Chem Eng 3:1036–1045

    Google Scholar 

  • Sarkheil H, Noormohammadi F, Rezaei AR, Borujeni MK (2014) Dye pollution removal from mining and industrial wastewaters using chitson nanoparticles. In: International conference on agriculture, environment and biological sciences (ICFAE’14), Antalya, Turkey

  • Satheesh R, Vignesh K, Rajarajan M, Suganthi A, Sreekantan S, Kang M, Kwak BS (2016) Removal of congo red from water using quercetin modified α-Fe2O3 nanoparticles as effective nanoadsorbent. Mater Chem Phys 180:53–65

    CAS  Google Scholar 

  • Sathishkumar P, Sweena R, Wu JJ, Anandan S (2011) Synthesis of CuO–ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution. Chem Eng J 171(1):136–140

    CAS  Google Scholar 

  • Schlosser D (2020) Biotechnologies for water treatment. Advanced nano-bio technologies for water and soil treatment. Springer, Berlin/Heidelberg, pp 335–343

    Google Scholar 

  • Seah TH, Zhao GJ, Pumera M (2013) Surfactant capsules propel interfacial oil droplets: an environmental cleanup strategy. ChemPlusChem 78:395–397

    CAS  Google Scholar 

  • Seddigi ZS, Gondal MA, Baig U, Ahmed SA, Abdulaziz MA, Danish EY et al (2017) Facile synthesis of light harvesting semiconductor bismuth oxychloride nano photo-catalysts for efficient removal of hazardous organic pollutants. PLoS ONE 12(2):e0172218. https://doi.org/10.1371/journal.pone.0172218

    Article  CAS  Google Scholar 

  • Sekoai PT, Ouma CNM, Du Preez SP, Modisha P, Engelbrecht N, Bessarabov DG, Ghimirem A (2019) Application of nanoparticles in biofuels: an overview. Fuel 237:380–397

    CAS  Google Scholar 

  • Serrà A, Grau S, Gimbert-Suriñach C, Sort J, Nogués J, Vallés E (2017) Magnetically-actuated mesoporous nanowires for enhanced heterogeneous catalysis. Appl Catal B Environ 217:81–91

    Google Scholar 

  • Seyahmazegi EN, Mohammad-Rezaei R, Razmi H (2016) Multiwall carbon nanotubes decorated on calcined eggshell waste as a novel nano-sorbent: application for anionic dye Congo red removal. Chem Eng Res Des 109:824–834

    CAS  Google Scholar 

  • Shamsizadeh AA, Ghaedi M, Ansari A, Azizian S, Purkait MK (2014) Tin oxide nanoparticle loaded on activated carbon as new adsorbent for efficient removal of malachite green-oxalate: nonlinear kinetics and isotherm study. J Mol Liq 195:212–218

    CAS  Google Scholar 

  • Shao D, Hu J, Wang X (2010) Plasma induced grafting multiwalled carbon nanotube with chitosan and its application for removal of UO22+, Cu2+, and Pb2+ from aqueous solutions. Plasma Process Polym 7:977–985

    CAS  Google Scholar 

  • Shariati-Rad M, Irandoust M, Amri S, Feyzi M, Ja’fari F (2014) Magnetic solid phase adsorption, preconcentration and determination of methyl orange in water samples using silica coated magnetic nanoparticles and central composite design. Int Nano Lett 4:91–101

    CAS  Google Scholar 

  • Shayesteh M, Samimi A, Shafiee Afarani M, Khorram M (2016) Synthesis of titania-c–alumina multilayer nanomembranes on performance-improved alumina supports for wastewater treatment. Desalin Water Treat 57(20):9115–9122

    CAS  Google Scholar 

  • Sheibani M, Ghaedi M, Marahel F, Ansari A (2015) Congo red removal using oxidized multiwalled carbon nanotubes: kinetic and isotherm study. Desalin Water Treat 53:844–852

    CAS  Google Scholar 

  • Sherman J (2003) Nanoparticulate titanium dioxide coatings, and processes for the production and use thereof. U.S. patent no. 6653356B2

  • Shetti NP, Bukkitgar SD, Reddy KR, Aminabhavi TM (2019) Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf B Biointerfaces 178:385–394

    CAS  Google Scholar 

  • Shinde P, Gupta SS, Singh B, Polshettiwar V, Prasad BL (2017) Amphi-functional mesoporous silica nanoparticles for dye separation. J Mater Chem A. 5:14914–14921

    CAS  Google Scholar 

  • Simpson AE, Kerr CA, Buckley CA (1987) The effect of pH on the nanofiltration of the carbonate system in solution. Desalination 64:305–319

    CAS  Google Scholar 

  • Singh VV, Jurado-Sanchez B, Sattayasamitsathit S, Orozco J, Li JX, Galarnyk M, Fedorak Y, Wang J (2015) Multifunctional silver-exchanged zeolite micromotors for catalytic detoxification of chemical and biological threats. Adv Funct Mater 25:2147–2155

    CAS  Google Scholar 

  • Singh VP, Sharma M, Vaish R (2020) Enhanced dye adsorption and rapid photo catalysis in candle soot coated Bi2WO6 ceramics. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2020.123311

    Article  Google Scholar 

  • Sivashankar R, Thirunavukkarasu A, Nithya R, Kanimozhi J, Sathya AB (2020) Sequestration of methylene blue dye from aqueous solution by magnetic biocomposite: three level Box–Behnken experimental design optimization and kinetic studies. Sep Sci Technol 55(10):1752–1765

    CAS  Google Scholar 

  • Soler L, Magdanz V, Fomin VM, Sanchez S, Schmidt OG (2013) Self-propelled micromotors for cleaning polluted water. ACS Nano 7(11):9611–9620

    CAS  Google Scholar 

  • Soltani RDC, Khataee AR, Safari M, Joo SW (2013) Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions. Int Biodeterior Biodegrad 85:383–391

    Google Scholar 

  • Suzimara R, Jonnatan JS, Paola C, Denise AF (2018) Highly pure silica nanoparticles with high adsorption capacity obtained from sugarcane waste ash. ACS Omega 3:2618–2627

    Google Scholar 

  • Szlachta M, Wojtowicz P (2013) Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes. Water Sci Technol 68:2240–2248

    CAS  Google Scholar 

  • Taghdiri M (2017) Selective adsorption and photocatalytic degradation of dyes using polyoxometalate hybrid supported on magnetic activated carbon nanoparticles under sunlight. Visible, and UV Irradiation ID 8575096. 10.1155/2017/8575096

  • Taherian F, Marcon V, van der Vegt NF, Leroy F (2013) What is the contact angle of water on graphene? Langmuir 29:1457–1465

    CAS  Google Scholar 

  • Tahir MB, Kiran H, Iqbal T (2019) The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: a review. Environ Sci Pollut Res 26:10515–10528

    CAS  Google Scholar 

  • Tang WW, Zeng GM, Gong JL, Liu Y, Wang XY, Liu YY, Liu ZF, Chen L, Zhang XR, Tu DZ (2012) Simultaneous adsorption of atrazine and Cu(II) from wastewater by magnetic multi-walled carbon nanotube. Chem Eng J 211:470–478

    Google Scholar 

  • Tang WW, Zeng GM, Gong JL (2014a) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci Total Environ 468:1014–1027

    Google Scholar 

  • Tang X, Zhang Q, Liu Z, Pan K, Dong Y, Li Y (2014b) Removal of Cu(II) by loofah fibers as a natural and low-cost adsorbent from aqueous solutions. J Mol Liq 199:401–407

    CAS  Google Scholar 

  • Tanhaei B, Ayati A, Lahtinen M, Sillanpaa M (2015) Kadam. Chem Eng J 259:1–10

    CAS  Google Scholar 

  • Tarigh GD, Shemirani F (2013) Magnetic multi-wall carbon nanotube nanocomposite as an adsorbent for preconcentration and determination of lead(II) and manganese(II) in various matrices. Talanta 115:744–750

    Google Scholar 

  • Tavassolia N, Ansaria R, Mosayebzadeh Z (2017) Synthesis and application of iron oxide/silica gel nanocomposite for removal of sulfur dyes from aqueous solutions. Arch Hyg Sci 6:214–220

    Google Scholar 

  • Tawabini BS, Khaldi SFA, Khaled MM, Atieh MA (2011) Removal of arsenic from water by iron oxide nanoparticles impregnated on carbon nanotubes. J Environ Sci Health 46:215–223

    CAS  Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69

    CAS  Google Scholar 

  • Thirunavukkarasu A, Nithya R (2019) Response surface optimization of Cu(II) biosorption onto Candida tropicalis immobilized strontium alginate beads by Box–Behnken experimental design. J Environ Biotechnol Res 8(2):14–21

    Google Scholar 

  • Thirunavukkarasu A, Nithya R (2020) Adsorption of acid orange 7 using green synthesized CaO/CeO2 composite: an insight into kinetics, equilibrium, thermodynamics, mass transfer and statistical models. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2020.04.007

    Article  Google Scholar 

  • Thirunavukkarasu A, Muthukumaran K, Nithya R (2018) Adsorption of acid yellow 36 onto green nanoceria and amine functionalized green nanoceria: comparative studies on kinetics, isotherm, thermodynamics, and diffusion analysis. J Taiwan Inst Chem Eng 93:211–225

    CAS  Google Scholar 

  • Umar K (2018) Water contamination by organic-pollutants: TiO2 photocatalysis. In: Oves M, Khan MZ, Ismail IMI (eds) Modern age environmental problem and remediation. Springer, Switzerland, pp 95–109

    Google Scholar 

  • Umar K, Dar AA, Haque MM, Mir NA, Muneer M (2012) Photocatalysed decolourization of two textile dye derivatives, Martius Yellow and Acid Blue 129 in UV-irradiated aqueous suspensions of Titania. Desalin Water Treat 46:205–214

    CAS  Google Scholar 

  • Umar K, Haque MM, Mir NA, Muneer M (2013) Titanium dioxide-mediated photocatalyzed mineralization of two selected organic pollutants in aqueous suspensions. J Adv Oxid Technol 16:252–260

    CAS  Google Scholar 

  • Umar K, Aris A, Parveen T, Jaafar J, Majid ZA, Reddy AVB, Talib J (2015) Synthesis, characterization of Mo and Mn doped Zno and their photocatalytic activity for the decolorization of two different chromophoric dyes. Appl Catal A 505:507–514

    CAS  Google Scholar 

  • Umar K, Ibrahim MNM, Ahmad A, Rafatullah M (2019) Synthesis of Mn-doped TiO2 by novel route and photocatalytic mineralization/intermediate studies of organic pollutants. Res Chem Intermed 45:2927–2945

    CAS  Google Scholar 

  • Van Gerven T, Mul G, Moulijn J, Stankiewicz A (2007) A review of intensification of photocatalytic processes. Chem Eng Process Process Intensif 46:781–789

    Google Scholar 

  • Vilela D, Parmar J, Zeng YF, Zhao YL, Sanchez S (2016) Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett 16:2860–2866

    CAS  Google Scholar 

  • Volodymyr TV (2009) Multifunctional nanomaterial-enabled membranes for water treatment. Nanotechnology applications for clean water. William Andrew Publishing, Boston, pp 59–75

    Google Scholar 

  • Waduge P, Larkin J, Upmanyu M, Kar S, Wanunu M (2015) Programmed synthesis of freestanding graphene nanomembrane arrays. Nano Microphone 11:597–603

    CAS  Google Scholar 

  • Wang N, Zhang X, Wang Y, Yu W, Chan HL (2014a) Microfluidic reactors for photocatalytic water purification. Lab Chip 14:1074–1082

    CAS  Google Scholar 

  • Wang P, Cao M, Wang C, Ao Y, Hou J, Qian J (2014b) Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene–carbon nanotube composite. Appl Surf Sci 290:116–124

    CAS  Google Scholar 

  • Wang H, Khezri B, Pumera M (2016a) Catalytic DNA-functionalized self-propelled micromachines for environmental remediation. Chem 1:473–481

    CAS  Google Scholar 

  • Wang P, Wang X, Yu S, Zou Y, Wang J, Chen Z, Wang X (2016b) Silica coated Fe3O4 magnetic nanospheres for high removal of organic pollutants from wastewater. Chem Eng J 306:280–288

    CAS  Google Scholar 

  • Wang Y, Zhang Y, Hou C, Liu M (2016c) Mussel-inspired synthesis of magnetic polydopamine–chitosan nanoparticles as biosorbent for dyes and metals removal. J Taiwan Inst Chem Eng 61:292–298

    CAS  Google Scholar 

  • Wang R, Guo W, Li X, Liu Z, Liu H, Ding S (2017) Highly efficient MOF-based self-propelled micromotors for water purification. RSC Adv 7:42462–42467

    CAS  Google Scholar 

  • Wen T, Zhao Z, Shen C, Li J, Tan X, Zeb A, Xu AW (2016) Multifunctional flexible free-standing titanate nanobelt membranes as efficient sorbents for the removal of radioactive 90Sr2+ and 137Cs+ ions and oils. Sci Rep 6:20920. https://doi.org/10.1038/srep20920

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (2015) Drinking-water: fact sheet no. 391. http://www.who.int/mediacentre/factsheets/fs391/en/

  • Wu R, Liu JH, Zhao L, Zhang X, Xie J, Yu B, Liu Y (2014) Hydrothermal preparation of magnetic Fe3O4@C nanoparticles for dye adsorption. J Environ Chem Eng 2(2):907–913

    CAS  Google Scholar 

  • Wu X, Liu C, Qi H, Zhang X, Dai J, Zhang Q, Peng X (2016) Synthesis and adsorption properties of halloysite/carbon nanocomposites and halloysite-derived carbon nanotubes. Appl Clay Sci 119:284–293

    CAS  Google Scholar 

  • Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D, Chen J, Wang X (2019) Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ Pollut 246:608–620

    CAS  Google Scholar 

  • Xuan M, Shao J, Lin X, Dai L, He Q (2014) Self-propelled Janus mesoporous silica nanomotors with sub-100 nm diameters for drug encapsulation and delivery. ChemPhysChem 15(11):2255–2260. https://doi.org/10.1002/cphc.201402111

    Article  CAS  Google Scholar 

  • Yamakata A, Junie Jhon MV (2019) Curious behaviors of photogenerated electrons and holes at the defects on anatase, rutile, and brookite TiO2 powders: a review. J Photochem Photobiol C Phtotochem Rev 40:234–243

    CAS  Google Scholar 

  • Yang M (2011) A current global view of environmental and occupational cancers. J Environ Sci Health Part C 29:223–249

    CAS  Google Scholar 

  • Yao YX, Li HB, Liu JY, Tan XL, Yu JG, Peng ZG (2014) Removal and adsorption of p-nitrophenol from aqueous solutions using carbon nanotubes and their composites. J Nanomater 2014:571745

    Google Scholar 

  • Yaqoob AA, Ibrahim MNM (2019) A review article of nanoparticles; synthetic approaches and wastewater treatment methods. Int Res J Eng Technol 6:1–7

    Google Scholar 

  • Yaqoob AA, Parveen T, Umar K, Ibrahim MNM (2020) Role of nanomaterials in the treatment of wastewater: a review. Water 12:495. https://doi.org/10.3390/w12020495

    Article  CAS  Google Scholar 

  • Yin J, Yang Y, Hu Z, Deng B (2013) Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling. J Membr Sci 441:73–82

    CAS  Google Scholar 

  • Ying Y, Pumera M (2019) Micro/nanomotors for water purification. Chem-Eur J 25:106–121

    CAS  Google Scholar 

  • Yu F, Hu Q, Dong L et al (2017) 3D printed self-driven thumb-sized motors for in situ underwater pollutant remediation. Sci Rep 7:41169. https://doi.org/10.1038/srep41169

    Article  CAS  Google Scholar 

  • Zahid M, Rashid A, Akram S, Rehan ZA, Razzaq W (2018) A comprehensive review on polymeric nano-composite membranes for water treatment. J Membr Sci Technol 8:179–190

    Google Scholar 

  • Zare K, Najafi F, Sadegh H (2013) Studies of ab initio and Monte Carlo simulation on interaction of fluorouracil anticancer drug with carbon nanotube. J Nanostruct Chem 3:1–8

    Google Scholar 

  • Zare-Dorabei R, Ferdowsi SM, Barzin A, Tadjarodi A (2016) Highly efficient simultaneous ultrasonic-assisted adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) ions from aqueous solutions by graphene oxide modified with 2,20-dipyridylamine: central composite design optimization. Ultrason Sonochem 32:265–276

    CAS  Google Scholar 

  • Zarezadeh-Mehrizi M, Badiei A (2014) Highly efficient removal of basic blue 41 with nanoporous silica. Water Resour Ind 5:49–57

    Google Scholar 

  • Zelmanov G, Semiat R (2008) Phenol oxidation kinetics in water solution using iron (3)-oxide-based nano-catalysts. Water Res 42:3848–3856

    CAS  Google Scholar 

  • Zhang C, Sui J, Li J, Tang Y, Cai W (2012) Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nanotubes. Chem Eng J 210:45–52

    CAS  Google Scholar 

  • Zhang M, Field RW, Zhang K (2014a) Biogenic silver nanocomposite polyethersulfone UF membranes with antifouling properties. J Membr Sci 471:274–284

    CAS  Google Scholar 

  • Zhang Q, Xu R, Xu P, Chen R, He Q, Zhong J, Gu X (2014b) Performance study of ZrO2 ceramic micro-filtration membranes used in pretreatment of DMF wastewater. Desalination 346:1–8

    CAS  Google Scholar 

  • Zhang Y, Yan L, Xu W, Guo X, Cui L, Gao L, Wei Q, Du B (2014c) Adsorption of Pb(II) and Hg(II) from aqueous solution using magnetic CoFe2O4 reduced graphene oxide. J Mol Liq 191:177–182

    CAS  Google Scholar 

  • Zhang YR, Shen SL, Wang SQ, Huang J, Su P, Wang QR, Zhao BX (2014d) A dual function magnetic nanomaterial modified with lysine for removal of organic dyes from water solution. Chem Eng J 239:250–256

    CAS  Google Scholar 

  • Zhang L, Zhang G, Wang S, Peng J, Cui W (2016a) Cation-functionalized silica nanoparticle as an adsorbent to selectively adsorb anionic dye from aqueous solutions. Environ Prog Sustain Energy 35:1070–1077

    Google Scholar 

  • Zhang ZJ, Zhao AD, Wang FM, Ren JS, Qu XG (2016b) Design of a plasmonic micromotor for enhanced photo-remediation of polluted anaerobic stagnant waters. Chem Commun 52:5550–5553

    CAS  Google Scholar 

  • Zhang Q, Dong R, Wu Y, Gao W, He Z, Ren B (2017) Light-driven Au–WO3@C Janus micromotors for rapid photodegradation of dye pollutants. ACS Appl Mater Interfaces 9(5):4674–4683

    CAS  Google Scholar 

  • Zhang X, Zhang P, Wu Z, Zhang L, Zeng G, Zhou C (2013) Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles. Colloids Surf A Physicochem Eng Asp 435:85–90

    CAS  Google Scholar 

  • Zhao GJ, Seah TH, Pumera M (2011) External-energy-independent polymer capsule motors and their cooperative behaviors. Chem Eur J 17:12020–12026

    CAS  Google Scholar 

  • Zhao D, Zhang W, Chen C, Wang X (2013) Adsorption of methyl orange dye onto multiwalled carbon nanotubes. Proc Environ Sci 18:890–895

    CAS  Google Scholar 

  • Zhou Z, Lin S, Yue T, Lee TC (2014) Adsorption of food dyes from aqueous solution by glutaraldehyde cross-linked magnetic chitosan nanoparticles. J Food Eng 126:133–141

    CAS  Google Scholar 

  • Zhu H, Fu Y, Jiang R, Yao J, Liu L, Chen Y, Zeng G (2013) Preparation, characterization and adsorption properties of chitosan modified magnetic graphitized multi-walled carbon nanotubes for highly effective removal of a carcinogenic dye from aqueous solution. Appl Surf Sci 285:865–873

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunachalam Thirunavukkarasu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirunavukkarasu, A., Nithya, R. & Sivashankar, R. A review on the role of nanomaterials in the removal of organic pollutants from wastewater. Rev Environ Sci Biotechnol 19, 751–778 (2020). https://doi.org/10.1007/s11157-020-09548-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-020-09548-8

Keywords

Navigation