Skip to main content
Log in

Studying the Phase Transformation Kinetics of the U–6Nb Alloy Using NMR Methods

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The inhomogeneous magnetic state arising from isothermal aging of the rapidly quenched U–6Nb alloy (6.3 wt % or 14 at % niobium) was studied for the first time using nuclear magnetic resonance of the 93Nb nucleus. In the process of phase transformation during isothermal annealing at Тan = 500°C, the fraction of niobium atoms in the bulk of the alloy increases in regions with a magnetic susceptibility corresponding to the alloys U1–хNbх (х > 0.14). It is shown that the process of isothermal transformation, accompanied by the formation of niobium-enriched structural precipitates, is fully completed after 60 hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Koike, M. E. Kassner, R. E. Tate, and R. S. Rosen, “The Nb–U (niobium–uranium) system,” J. Phase Equilib. 19, 253–260 (1998).

    Article  CAS  Google Scholar 

  2. D. W. Brown, R. E. Hackenberg, D. F. Teter, M. A. Bourke, and D. Thoma, “Aging and deformation of uranium-niobium alloys,” Los Alamos Sci. 30, 78–83 (2006).

    Google Scholar 

  3. R. E. Hackenberg, H. M. Volz, P. A. Papin, A. M. Kelly, R. T. Forsyth, T. J. Tucker, and K. D. Clarke, “Kinetics of lamellar decomposition reactions in U-Nb alloys,” Solid State Phenom. 172174, 555–560 (2011).

    Article  Google Scholar 

  4. Yu. N. Zuev, V. V. Sagaradze, G. N. Rykovanov, N. L. Pecherkina, I. I. Kabanova, I. L. Svyatov, S. V. Bondarchuk, and D. V. Belyaev, “Phase and structural transformations in U and U–Nb alloy upon severe deformation and heat treatments,” Phys. Met. Metallogr. 114, 1097–1128 (2013).

    Article  Google Scholar 

  5. V. V. Sagaradze, Y. N. Zuev, S. V. Bondarchuk, I. L. Svyatov, A. E. Shestakov, N. L. Pecherkina, I. G. Kabanova, and M. F. Klyukina, “Structural heredity in the U–6Nb alloy and conditions for its elimination,” Phys. Met. Metallogr. 114, 299–307 (2013).

    Article  Google Scholar 

  6. C. P. Chiotti, H. H. Klepfer, and R. W. White, “Lattice parameters of uranium from 25 to 1132°C,” Trans. Am. Soc. Met. 51, 772–782 (1959).

    Google Scholar 

  7. M. Anagnostidis, M. Columbie, and H. Monti, “Metastable phases in uranium–niobium alloys,” J. Nucl. Mater. 11, 67–76 (1964).

    Article  CAS  Google Scholar 

  8. R. A. Vandermeer, J. C. Ogle, and W. G. Northcutt, “A phenomenological study of the shape memory effect in polycrystalline uranium–niobium alloys,” Metall. Trans. A 12, 733–741 (1981).

    Article  CAS  Google Scholar 

  9. H. Ji, X. Chen, P. Shi, G. Hu, R. Li, J. Yang, and X. Wang, “The effects of microstructure on the hydriding for 500°C/2 h aged U–13 at % Nb alloy,” Nucl. Mater. 488, 252–260 (2017).

    Article  CAS  Google Scholar 

  10. R. E. Hackenberg, M. G. Emigh, A. M. Kelly, P. A. Papin, R. T. Forsyth, T. J. Tucker, and K. D. Clarke, “The surprising occurrence of non-steady-state growth of divergent lamellar decomposition products in uranium–niobium alloys: A preliminary report,” Los Alamos National Laboratory. Report LA-UR-12-25218 (2012), pp. 1–91.

  11. R. E. Hackenberg, G. M. Hemphill, D. J. Alexander, T. J. Tucker, R. M. Jr. Aikin, and R. T. Forsyth, “U–Nb aging and lifetime prediction: Assessment for 2012,” Los Alamos National Laboratory. Report No. LA-UR-12-26893 (2012), pp. 1–34.

  12. J. Zhang, S. Vogel, D. Brown, B. Clausen, and R. Hackenberg, “Equation of state, phase stability, and phase transformations of uranium–6 wt % niobium under high pressure and temperature,” Appl. Phys. 123, 175103 (2018).

    Article  Google Scholar 

  13. D. W. Brown, M. A. M. Bourke, R. D. Field, W. L. Hults, D. F. Teter, D. J. Thoma, and S. C. Vogel, “Neutron diffraction study of the deformation mechanisms of the uranium–7 wt % niobium shape memory alloy,” Mater. Sci. Eng., A 421, 15–21 (2006).

    Article  Google Scholar 

  14. K. N. Mikhalev, Z. N. Volkova, and A. P. Gerashchenko, “Nuclear magnetic resonance in manganites,” Phys. Met. Metallogr. 115, 1139–1159 (2014).

    Article  Google Scholar 

  15. D. A. Shishkin, A. S. Volegov, V. V. Ogloblichev, K. N. Mikhalev, E. G. Gerasimov, P. B. Terentev, V. S. Gaviko, D. I. Gorbunov, and N. V. Baranov, “Effect of Tb for Gd substitution on magnetic and magnetocaloric properties of melt-spun (Gd1 - xTbx)3Co alloys,” Intermetallics 104, 1–7 (2019).

    Article  CAS  Google Scholar 

  16. H. Alloul, “NMR in strongly correlated materials,” Scholarpedia 10, 30632 (2015).

    Article  Google Scholar 

  17. A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961).

    Google Scholar 

  18. C. P. Slichter, Principles of Magnetic Resonance (Harper & Row, New York, 1963).

    Google Scholar 

  19. Yu. Piskunov, K. Mikhalev, A. Gerashenko, A. Pogudin, V. Ogloblichev, S. Verkhovskii, A. Tankeyev, V. Arkhipov, Yu. Zouev, and S. Lekomtsev, “Spin susceptibility of Ga-stabilized δ-Pu probed by 69Ga NMR,” Phys. Rev. B 71, 174410 (2005).

    Article  Google Scholar 

  20. G. C. Carter, L. H. Bennett, and D. J. Kahan, Metallic Shifts in NMR. Volume 20 of Progress in Materials Science, In four parts (Pergamon, Oxford, 1977).

  21. V. V. Ogloblichev, A. M. Potapov, S. V. Verkhovskii, and A. V. Mirmelstein, “14N Nuclear Magnetic Resonance and Relaxation in the Paramagnetic Region of Uranium Mononitride,” JETP Lett. 108, 616–622 (2018).

    Article  CAS  Google Scholar 

  22. M. Kuznietz, Y. Baskin, and G. A. Matzkanin, “Nuclear magnetic resonance and relaxation of 31P in the paramagnetic state of the UP–US solid solutions,” Phys. Rev. 187, 737–746 (1969).

    Article  CAS  Google Scholar 

  23. M. Kuznietz, “NMR of 14N in the paramagnetic state of uranium mononitride,” Phys. Rev. 180, 476–481 (1969).

    Article  CAS  Google Scholar 

  24. S. V. Verkhovskii, V. E. Arkhipov, Yu. N. Zuev, Yu. V. Piskunov, K. N. Mikhalev, A. V. Korolev, I. L. Svyatov, A. V. Pogudin, V. V. Ogloblichev, and A. L. Buzlukov, “Features of the magnetic state of ƒ electrons in the stabilized δ phase of the Pu0.95Ga0.05 alloy,” JETP Lett. 82, 139–144 (2005).

    Article  CAS  Google Scholar 

  25. L. F. Bates and D. Hughes, “The magnetic susceptibility of metallic uranium,” Proc. Phys. Soc. B 67, 28–37 (1954).

    Article  Google Scholar 

  26. L. F. Bates and R. D. Barnard, “The electrical and magnetic properties of the uranium–niobium system,” Proc. Phys. Soc. 78, 361–369 (1961).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.E. Shestakov, D.V. Yakovlev, I.V. Toropov, K.G. Toporishchev, and A. S. Nedosvit’ (all are employees of the All-Russian Research Institute of Technical Physics) for help in our research.

Funding

This work was carried out as part of the state task of the Ministry of Education and Science of the Russian Federation (“Function”, state registration no. AAAA-A19-119012990095-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ogloblichev.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogloblichev, V.V., Zuev, Y.N., Verkhovskii, S.V. et al. Studying the Phase Transformation Kinetics of the U–6Nb Alloy Using NMR Methods. Phys. Metals Metallogr. 121, 670–674 (2020). https://doi.org/10.1134/S0031918X20070078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20070078

Keywords:

Navigation