Skip to main content

Advertisement

Log in

Steroid treatment promotes an M2 anti-inflammatory macrophage phenotype in childhood lupus nephritis

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

M1-type proinflammatory macrophages (MΦ) promote glomerular injury in lupus nephritis (LN). However, whether this phenotype is altered by steroid therapy is unclear. Therefore, we investigated the effect of steroid treatment on MΦ phenotype in LN.

Methods

Patients with LN (7–18 years old) were divided into 2 groups: those with no treatment (N) before biopsy (n = 17) and those who underwent steroid (S) treatment (3–73 days) before biopsy (n = 15). MΦ number and phenotype were assessed by immunofluorescence. In vitro studies used monocyte-derived MΦ from healthy volunteers.

Results

Age at biopsy, urine findings, and kidney function (eGFR) were comparable between the two groups. Biopsies in N group had higher levels of active lesions such as endocapillary hypercellularity, necrosis, and cellular crescent formation (p < 0.05). The total CD68+ MΦ infiltrate was comparable between N and S groups. However, N group had more M1 MΦ (CD68+ CD86+ cells) (p < 0.05) and fewer M2 MΦ (CD68+ CD163+ cells) (p < 0.05), giving a 6-fold increase in the M2/M1 ratio in S vs. N groups. Dexamethasone treatment of cultured MΦ induced upregulation of CD163 expression, increased production of anti-inflammatory (IL-10, IL-19) and profibrotic factors (FGF-22, PDGF), and upregulated the scavenger receptor, stabilin-1. Upregulation of stabilin-1 in CD163+ M2 MΦ was confirmed in biopsies from S group.

Conclusions

Initial steroid treatment induces MΦ phenotypic change from proinflammatory M1 to anti-inflammatory or profibrotic M2 in LN with acute/active lesions. Although steroid treatment is effective for resolution of M1-medated injury, promotion of fibrotic lesions via M2 MΦ is a potential downside of steroid single therapy in LN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Almaani S, Meara A, Rovin BH (2017) Update on lupus nephritis. Clin J Am Soc Nephrol 12:825–835

    Article  PubMed  Google Scholar 

  2. Chalmers SA, Chitu V, Ramanujam M, Putterman C (2015) Therapeutic targeting of macrophages in lupus nephritis. Discov Med 20:43–49

    PubMed  Google Scholar 

  3. Cheunsuchon B, Incharoen P, Chawanasuntorapoj R, Chanchairujira T, Shayakul C (2013) Glomerular macrophage is an indicator of early treatment response in diffuse proliferative lupus nephritis. J Med Assoc Thail 96(Suppl 2):S246–S251

    Google Scholar 

  4. Orme J, Mohan C (2012) Macrophage subpopulations in systemic lupus erythematosus. Discov Med 13:151–158

    PubMed  Google Scholar 

  5. Menke J, Rabacal WA, Byrne KT, Iwata Y, Schwartz MM, Stanley ER, Schwarting A, Kelley VR (2009) Circulating CSF-1 promotes monocyte and macrophage phenotypes that enhance lupus nephritis. J Am Soc Nephrol 20:2581–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Menke J, Iwata Y, Rabacal WA, Basu R, Stanley ER, Kelley VR (2011) Distinct roles of CSF-1 isoforms in lupus nephritis. J Am Soc Nephrol 22:1821–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23:344–346

    Article  CAS  PubMed  Google Scholar 

  8. Iwata Y, Boström EA, Menke J, Rabacal WA, Morel L, Wada T, Kelley VR (2012) Aberrant macrophages mediate defective kidney repair that triggers nephritis in lupus-susceptible mice. J Immunol 188:4568–4580

    Article  CAS  PubMed  Google Scholar 

  9. Schiffer L, Bethunaickan R, Ramanujam M, Huang W, Schiffer M, Tao H, Madaio MP, Bottinger EP, Davidson A (2008) Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis. J Immunol 180:1938–1947

    Article  CAS  PubMed  Google Scholar 

  10. Bethunaickan R, Berthier CC, Ramanujam M, Sahu R, Zhang W, Sun Y, Bottinger EP, Ivashkiv L, Kretzler M, Davidson A (2011) A unique hybrid renal mononuclear phagocyte activation phenotype in murine systemic lupus erythematosus nephritis. J Immunol 186:4994–5003

    Article  CAS  PubMed  Google Scholar 

  11. Ikezumi Y, Suzuki T, Hayafuji S, Okubo S, Nikolic-Paterson DJ, Kawachi H, Shimizu F, Uchiyama M (2005) The sialoadhesin (CD169) expressing a macrophage subset in human proliferative glomerulonephritis. Nephrol Dial Transplant 20:2704–2713

    Article  CAS  PubMed  Google Scholar 

  12. Chávez-Galán L, Olleros ML, Vesin D, Garcia I (2015) Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol 6:263. https://doi.org/10.3389/fimmu.2015.00263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ehrchen J, Steinmüller L, Barczyk K, Tenbrock K, Nacken W, Eisenacher M, Nordhues U, Sorg C, Sunderkötter C, Roth J (2007) Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood 109:1265–1274

    Article  CAS  PubMed  Google Scholar 

  14. Ikezumi Y, Suzuki T, Karasawa T, Hasegawa H, Kawachi H, Nikolic-Paterson DJ, Uchiyama M (2010) Contrasting effects of steroids and mizoribine on macrophage activation and glomerular lesions in rat thy-1 mesangial proliferative glomerulonephritis. Am J Nephrol 31:273–282

    Article  CAS  PubMed  Google Scholar 

  15. Weening JJ, D’Agati VD, Schwartz MM, Seshan SV, Alpers CE, Appel GB, Balow JE, Bruijn JA, Cook T, Ferrario F, Fogo AB, Ginzler EM, Hebert L, Hill G, Hill P, Jennette JC, Kong NC, Lesavre P, Lockshin M, Looi LM, Makino H, Moura LA, Nagata M (2004) The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol 15:241–250

    Article  PubMed  Google Scholar 

  16. Moroni G, Depetri F, Ponticelli C (2016) Lupus nephritis: when and how often to biopsy and what does it mean? J Autoimmun 74:27–40

    Article  PubMed  Google Scholar 

  17. Gladman DD, Ibanez D, Urowitz MB (2002) Systemic lupus erythematosus disease activity index 2000. J Rheumatol 29:288–291

    PubMed  Google Scholar 

  18. Gregory MC (2005) The clinical features of thin basement membrane nephropathy. Semin Nephrol 25:140–145

    Article  PubMed  Google Scholar 

  19. Savige J, Rana K, Tonna S, Buzza M, Dagher H, Wang YY (2003) Thin basement membrane nephropathy. Kidney Int 64:1169–1178

    Article  PubMed  Google Scholar 

  20. Uemura O, Nagai T, Ishikura K, Ito S, Hataya H, Gotoh Y, Fujita N, Akioka Y, Kaneko T, Honda M (2014) Creatinine-based equations to estimate glomerular filtration rate in Japanese children and adolescents with chronic kidney disease. Clin Exp Nephrol 18:626–633

    Article  CAS  PubMed  Google Scholar 

  21. Ikezumi Y, Atkins RC, Nikolic-Paterson DJ (2003) Interferon-gamma augments acute macrophage-mediated renal injury via a glucocorticoid-sensitive mechanism. J Am Soc Nephrol 14:888–898

    Article  CAS  PubMed  Google Scholar 

  22. Ikezumi Y, Suzuki T, Yamada T, Hasegawa H, Kaneko U, Hara M, Yanagihara T, Nikolic-Paterson DJ, Saitoh A (2015) Alternatively activated macrophages in the pathogenesis of chronic kidney allograft injury. Pediatr Nephrol 30:1007–1017

    Article  PubMed  Google Scholar 

  23. Tu GW, Shi Y, Zheng YJ, Ju MJ, He HY, Ma GG, Hao GW, Luo Z (2017) Glucocorticoid attenuates acute lung injury through induction of type 2 macrophage. J Transl Med 15:181

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nishino A, Katsumata Y, Kawasumi H, Hirahara S, Kawaguchi Y, Yamanaka H (2019) Usefulness of soluble CD163 as a biomarker for macrophage activation syndrome associated with systemic lupus erythematosus. Lupus 28:986–994

    Article  CAS  PubMed  Google Scholar 

  25. O’Reilly VP, Wong L, Kennedy C, Elliot LA, O’Meachair S, Coughlan AM, O’Brien EC, Ryan MM, Sandoval D, Connolly E, Dekkema GJ, Lau J, Abdulahad WH, Sanders JS, Heeringa P, Buckley C, O’Brien C, Finn S, Cohen CD, Lindemeyer MT, Hickey FB, O’Hara PV, Feighery C, Moran SM, Mellotte G, Clarkson MR, Dorman AJ, Murray PT, Little MA (2016) Urinary soluble CD163 in active renal vasculitis. J Am Soc Nephrol 27:2906–2916

    Article  PubMed  PubMed Central  Google Scholar 

  26. Endo N, Tsuboi N, Furuhashi K, Shi Y, Du Q, Abe T, Hori M, Imaizumi T, Kim H, Katsuno T, Ozaki T, Kosugi T, Matsuo S, Maruyama S (2016) Urinary soluble CD163 level reflects glomerular inflammation in human lupus nephritis. Nephrol Dial Transplant 31:2023–2033

    Article  CAS  PubMed  Google Scholar 

  27. Goerdt S, Bhardwaj R, Sorg C (1993) Inducible expression of MS-1 high-molecular-weight protein by endothelial cells of continuous origin and by dendritic cells/macrophages in vivo and in vitro. Am J Pathol 142:1409–1422

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Salmi M, Koskinen K, Henttinen T, Elima K, Jalkanen S (2004) CLEVER-1 mediates lymphocyte transmigration through vascular and lymphatic endothelium. Blood 104:3849–3857

    Article  CAS  PubMed  Google Scholar 

  29. Karikoski M, Irjala H, Maksimow M, Miiluniemi M, Granfors K, Hernesniemi S, Elima K, Moldenhauer G, Schledzewski K, Kzhyshkowska J, Goerdt S, Salmi M, Jalkanen S (2009) Clever-1/stabilin-1 regulates lymphocyte migration within lymphatics and leukocyte entrance to sites of inflammation. Eur J Immunol 39:3477–3487

    Article  CAS  PubMed  Google Scholar 

  30. Shetty S, Weston CJ, Oo YH, Oo YH, Westerlund N, Stamataki Z, Youster J, Hubscher SG, Salmi M, Jalkanen S, Lalor PF, Adams DH (2011) Common lymphatic endothelial and vascular endothelial receptor-1 mediates the transmigration of regulatory T cells across human hepatic sinusoidal endothelium. J Immunol 186:4147–4155

    Article  CAS  PubMed  Google Scholar 

  31. Palani S, Elima K, Ekholm E, Jalkanen S, Salmi M (2016) Monocyte stabilin-1 suppresses the activation of Th1 lymphocytes. J Immunol 196:115–123

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI grant number JP20K08219 to Y.I.

Author information

Authors and Affiliations

Authors

Contributions

Y.I. and D.J.N-P. designed the study. Y.I., T.K., Y.M., N.K., M.K., H.H., T.Y., and U.K. were involved in the acquisition of data. Y.I., N.K., and D.J.N-P. contributed to analysis and interpretation of data. Y.I. and D.J.N-P. provided writing or revision of the manuscript. All authors approved the final version.

Corresponding author

Correspondence to Yohei Ikezumi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee at which the studies were conducted (IRB approval number HM19-055)) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplemental Figure 1

Representative photomicrographs of kidney lesions in lupus nephritis (LN). (a) PAS staining shows a glomerulus with endocapillary hypercellularity ands a cellular crescent (arrow head); (b) HE staining shows a glomerulus with endocapillary hypercellularity and wire loops (arrow head). The same biopsy is stained with PAS (c) or Masson trichrome (d), to show glomeruli with segmental sclerosis or fibrous adhesion (arrow head), and interstitial fibrosis. (PPTX 2345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikezumi, Y., Kondoh, T., Matsumoto, Y. et al. Steroid treatment promotes an M2 anti-inflammatory macrophage phenotype in childhood lupus nephritis. Pediatr Nephrol 36, 349–359 (2021). https://doi.org/10.1007/s00467-020-04734-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04734-w

Keywords

Navigation