Skip to main content
Log in

Sensor attack reconstruction for mobile robots via a switching Kalman fusion mechanism

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Due to the poor security level in current industrial network, the control performance of robots may be severely affected by cyber attacks. This paper studies the sensor attack reconstruction problem of mobile robots, where a switching Kalman fusion mechanism is proposed to reconstruct the sensor attacks online. It is shown that the proposed mechanism is better than the existing extended state observer and event-triggered sensor attack reconstruction strategy. The experiment test demonstrates the effectiveness and superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhu, J.W., Gu, C.Y., Ding, S.X., Zhang, W.A., Yu, L.: A new observer based cooperative fault-tolerant tracking control method with application to networked multi-axis motion control system. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2020.3001857

    Article  Google Scholar 

  2. Wang, J.S., Yang, G.H.: Data-driven methods for stealthy attacks on TCP/IP-based networked control systems equipped with attack detectors. IEEE Trans. Cybern. 49(8), 3020–3031 (2019)

    Article  Google Scholar 

  3. Wu, L.B., Park, J.H., Zhao, N.N.: Robust adaptive fault-tolerant tracking control for nonaffine stochastic nonlinear systems with full state constraints. IEEE Trans. Cybern. 50(8), 3793–3805 (2020)

    Article  Google Scholar 

  4. Wang, Z., Shi, P., Lim, C.-C.: \(H-/H_\infty \) fault detection observer in finite frequency domain for linear parameter-varying descriptor system. Automatica 86, 38–45 (2017)

    Article  MathSciNet  Google Scholar 

  5. Wang, X., Yang, G.H.: Fault-tolerant consensus tracking control for linear multi-agent systems under switching directed network. IEEE Trans. Cybern. 50(5), 1921–1930 (2020)

    Article  Google Scholar 

  6. Tong, S.C., Li, Y.M.: Observer-based adaptive fuzzy backstepping control of uncertain nonlinear pure-feedback systems. Sci. China Inf. Sci. 57(1), 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  7. Wang, X., Yang, G.H.: Adaptive reliable coordination control for linear agent networks with intermittent communication constraints. IEEE Trans. Control Netw. Syst. 5(3), 1120–1131 (2018)

    Article  MathSciNet  Google Scholar 

  8. Yang, H., Ye, D.: Distributed fixed-time consensus tracking control of uncertain nonlinear multi-agent systems: a prioritized strategy. IEEE Trans. Cybern. 50(6), 2627–2638 (2020)

    Article  Google Scholar 

  9. Xie, W., Liu, B., Bu, L., Wang, Y., Zhang, J.: A decoupling approach for observer-based controller design of T–S fuzzy system with unknown premise variables. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.3006572

    Article  Google Scholar 

  10. Chen, B., Ho, D.W.C., Hu, G., Yu, L.: Secure fusion estimation for bandwidth constrained cyber-physical systems under replay attacks. IEEE Trans. Cybern. 48(6), 1862–1876 (2018)

    Article  Google Scholar 

  11. Wu, L.B., Park, J.K.: Adaptive fault-tolerant control of uncertain switched nonaffine nonlinear systems with actuator faults and time delays. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2894750

    Article  Google Scholar 

  12. Tong, S.C., Li, Y.M.: Robust adaptive fuzzy backstepping output feedback tracking control for nonlinear system with dynamic uncertainties. Sci. China Inf. Sci. 53(2), 307–324 (2010)

    Article  MathSciNet  Google Scholar 

  13. Shen, M., Nguang, S.K., Ahn, C.K., Wang, Q.: Robust \(H_2\) control of linear systems with mismatched quantization. IEEE Trans. Autom. Control 64(4), 1702–1709 (2019)

    Article  Google Scholar 

  14. Modares, H., Kiumarsi, B., Lewis, F.L., Ferrese, F., Davoudi, A.: Resilient and robust synchronization of multiagent systems under attacks on sensors and actuators. IEEE Trans. Cybern. 50(3), 1240–1250 (2020)

    Article  Google Scholar 

  15. Guan, Y., Ge, X.: Distributed attack detection and secure estimation of networked cyber-physical systems against false data injection attacks and jamming attacks. IEEE Trans. Signal Inf. Process. over Netw. 4(1), 48–59 (2018)

    Article  MathSciNet  Google Scholar 

  16. Wu, C., Wu, L., Liu, J., Jiang, Z.: Active defense-based resilient sliding mode control under denial-of-service attacks. IEEE Trans. Inf. Forensics Secur. 15, 237–249 (2020)

    Article  Google Scholar 

  17. Wu, C., Hu, Z., Liu, J., Wu, J.: Secure estimation for cyber-physical systems via sliding mode. IEEE Trans. Cybern. 48(12), 3420–3431 (2018)

    Article  Google Scholar 

  18. Haes Alhelou, H., Golshan, M.E.H., Hatziargyriou, N.D.: A decentralized functional observer based optimal LFC considering unknown inputs, uncertainties, and cyber-attacks. IEEE Trans. Power Syst. 34(6), 4408–4417 (2019)

    Article  Google Scholar 

  19. Shoukry, Y., Tabuada, P.: Event-triggered state observers for sparse sensor noise/attacks. IEEE Trans. Autom. Control 61(8), 2079–2091 (2016)

    Article  MathSciNet  Google Scholar 

  20. An, L.W., Yang, G.H.: Secure state estimation against sparse sensor attacks with adaptive switching mechanism. IEEE Trans. Autom. Control 63(8), 2596–2603 (2018)

    Article  MathSciNet  Google Scholar 

  21. Zhu, J.W., Yang, G.H., Wang, H., Wang, F.L.: Fault estimation for a class of nonlinear systems based on intermediate estimator. IEEE Trans. Autom. Control 61(9), 2518–2524 (2016)

    Article  MathSciNet  Google Scholar 

  22. Zhang, W.A., Yu, L., He, D.F.: Sequential fusion estimation for sensor networks with deceptive attacks. IEEE Trans. Aerosp. Electron. Syst. 56(3), 1829–1843 (2020)

    Article  Google Scholar 

  23. Wang, Z., Lim, C.-C., Shen, Y.: Interval observer design for uncertain discrete-time linear systems. Syst. Control Lett. 116, 41–46 (2018)

    Article  MathSciNet  Google Scholar 

  24. Ye, D., Zhang, T.: Summation detector for false data-injection attack in cyber-physical systems. IEEE Trans. Cybern. 50(6), 2338–2345 (2020)

    Article  Google Scholar 

  25. Corradini, M.L., Cristofaro, A.: Robust detection and reconstruction of state and sensor attacks for cyber-physical systems using sliding modes. IET Control Theory Appl. 11(11), 1756–1766 (2017)

    Article  MathSciNet  Google Scholar 

  26. An, L.W., Yang, G.H.: Distributed secure state estimation for cyber-physical systems under sensor attacks. Automatica 107, 526–538 (2019)

    Article  MathSciNet  Google Scholar 

  27. Lu, A.Y., Yang, G.H.: Switched projected gradient descent algorithms for secure state estimation under sparse sensor attacks. Automatica 103, 503–514 (2019)

    Article  MathSciNet  Google Scholar 

  28. López-Estrada, F.R., Ponsart, J.C., Theilliol, D., Astorga-Zaragoza, C.M., Flores-Montiel, M.: Robust state and fault estimation observer for discrete-time D-LPV systems with unmeasurable gain scheduling functions. Application to a binary distillation column. IFAC-PapersOnLine 48, 1012–1017 (2015)

    Article  Google Scholar 

  29. Morato, M.M., Regner, D.J., Mendes, P.R.C., Normey-Rico, J.E., Bordons, C.: Fault analysis, detection and estimation for a microgrid via \(H_2\)/\(H_\infty \) LPV observers. Int. J. Electr. Power Energy Syst. 105, 823–845 (2019)

    Article  Google Scholar 

  30. Huang, S.J., Yang, G.H.: Fault tolerant controller design for T–S fuzzy systems with time-varying delay and actuator faults: a K-step fault-estimation approach. IEEE Trans. Fuzzy Syst. 22(6), 1526–1540 (2014)

    Article  Google Scholar 

  31. Morato, M.M., Sename, O., Dugard, L., Nguyen, M.Q.: Fault estimation for automotive electro-rheological dampers: LPV-based observer approach. Control Eng. Pract. 85, 11–22 (2019)

    Article  Google Scholar 

  32. Gómez-Peñate, S., López-Estrada, F.R., Valencia-Palomo, G., Rotondo, D., Enríquez-Zárate, J.: Actuator and sensor fault estimation based on a proportional-integral quasi-LPV observer with inexact scheduling parameters. IFAC-PapersOnLine 52, 100–105 (2019)

    Article  Google Scholar 

  33. Chen, L.J., Edwards, C., Alwi, H.: Sensor fault estimation using LPV sliding mode observers with erroneous scheduling parameters. Automatica 101, 66–77 (2019)

    Article  MathSciNet  Google Scholar 

  34. Pérez-Estrada, A.-J., Osorio-Gordillo, G.-L., Darouach, M., Alma, M.: Adaptive observer design for LPV systems. IFAC-PapersOnLine 52, 140–145 (2019)

    Article  Google Scholar 

  35. Kamel, M.A., Yu, X., Zhang, Y.: Fault-tolerant cooperative control design of multiple wheeled mobile robots. IEEE Trans. Control Syst. Technol. 26(2), 756–764 (2018)

    Article  Google Scholar 

  36. Tarapore, D., Timmis, J., Christensen, A.L.: Fault detection in a swarm of physical robots based on behavioral outlier detection. IEEE Trans. Robot. 35(6), 1516–1522 (2019)

    Article  Google Scholar 

  37. Deng, R., Xiao, G., Lu, R., Liang, H., Vasilakos, A.V.: False data injection on state estimation in power systems—attacks, impacts, and defense: a survey. IEEE Trans. Ind. Inform. 13(2), 411–423 (2017)

    Article  Google Scholar 

  38. Sun, S.L., Deng, Z.L.: Multi-sensor optimal information fusion Kalman filter. Automatica 40(6), 1017–1023 (2004)

    Article  MathSciNet  Google Scholar 

  39. Wu, Z.G., Shi, P., Shu, Z., Su, H.Y., Lu, R.Q.: Passivity-based asynchronous control for Markov jump systems. IEEE Trans. Autom. Control 62(4), 2020–2025 (2017)

    Article  MathSciNet  Google Scholar 

  40. Shen, M., Zhang, H., Nguang, S.K., Ahn, C.K.: \(H_\infty \) output anti-disturbance control of stochastic Markov jump systems with multiple disturbances. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.2981112

    Article  Google Scholar 

  41. Wang, L.Q., Fang, M., Wu, Z.G.: Mean square stability for Markov jump Boolean networks. Sci. China Inf. Sci. 63(1), 186–195 (2020)

    MathSciNet  Google Scholar 

  42. Xie, W.B., Sang, S., Lam, H.K., Zhang, J.: A polynominal-membership-function approach for stability analysis of fuzzy systems. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2991149

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61803334, 61822311, 61703148 and 61673351, in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LQ18F030012, in part by the Natural Science Foundation of Heilongjiang Province under Grant F2017023, in part by the State Scholarship Fund of China Scholarship Council under Scholarship 201908330040, in part by the Outstanding Youth Fund of Heilongjiang University JCL201903, and in part by the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization under Grant U1709213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Wei Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, JW., Wang, Q., Zhang, WA. et al. Sensor attack reconstruction for mobile robots via a switching Kalman fusion mechanism. Nonlinear Dyn 102, 151–161 (2020). https://doi.org/10.1007/s11071-020-05905-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05905-y

Keywords

Navigation