Skip to main content
Log in

Assessment of Tailings Ponds by a Combination of Electrical (ERT and IP) and Hydrochemical Techniques (Linares, Southern Spain)

Bewertung von Absetzteichen durch eine Kombination von elektrischen (ERT und IP) und hydrochemischen Methoden (Linares, Südspanien)

Evaluación de los diques de colas mediante una combinación de técnicas eléctricas (ERT e IP) e hidroquímicas (Linares, sur de España)

电法(ERT和IP)与水化学联合方法的尾矿库评价(西班牙南部利纳勒斯)

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Accumulated mine waste in certain locations in the abandoned mining district of Linares-La Carolina (southern Spain) contain high levels of metals. Therefore, in recent years, many of these tailings ponds have been restored and sealed. This study assessed the efficacy of two geophysical techniques, electrical resistivity tomography (ERT) and induced polarisation (IP), combined with hydrochemical studies, as tools to image the effectiveness of the encapsulation. In the bedrock, ERT profiles distinguished a surficial layer of moderate-low resistivity values (below 80 Ω m), associated with alluvial sands or altered granite, and a deeper zone of high resistivity (up to 1000 Ω m) related to unaltered granite basement. Lateral changes in resistivity were identified inside the upper layer and downstream of the tailings pond. The IP profiles detected local anomalies in the chargeability values (up to 8 mV/V), unusual in granitic rocks. The locations with high chargeability also had low resistivity, which typically indicates the percolation of mining leachates in the underlying altered granites. Integration of geological and geochemical information confirmed this interpretation. This work verified that the combined use of ERT and IP methods were effective for monitoring ancient tailings ponds and for assessing tailings encapsulation.

Zusammenfassung

Die an bestimmten Stellen im stillgelegten Bergbaugebiet von Linares-La Carolina (Südspanien) abgelagerten Bergbauabfälle enthalten hohe Metallgehalte. Daher wurden in den letzten Jahren viele dieser Absetzteiche restauriert und versiegelt. In dieser Studie wurde die Wirksamkeit von zwei geophysikalischen Verfahren, der elektrischen Widerstandstomographie (ERT) und der induzierten Polarisation (IP), in Kombination mit hydrochemischen Studien als Werkzeuge zur Sichtbarmachung der Wirksamkeit der Einkapselung bewertet. Im Grundgestein unterschieden die ERT-Profile eine oberflächliche Schicht mit mäßig-niedrigen Widerstandswerten (unter 80 Ω.m), die mit Schwemmsand oder modifiziertem Granit assoziiert ist, und eine tiefere Zone mit hohem spezifischem Widerstand (bis zu 1000 Ω.m), die mit dem unveränderten Granitsockel in Verbindung steht. Seitliche Veränderungen des spezifischen Widerstandes wurden innerhalb der oberen Schicht und stromabwärts des Absetzteichs festgestellt. Die IP-Profile veranschaulichten lokale Anomalien in den Werten der Wiederaufladbarkeit (bis zu 8 mV/V), was bei Granitgestein ungewöhnlich ist. Die Standorte mit hoher Wiederaufladbarkeit hatten auch einen geringen spezifischen Widerstand, was typischerweise auf die Versickerung von Bergbausickerwässern in den darunter liegenden modifizierten Graniten hinweist. Die Zusammenführung von geologischen und geochemischen Informationen bestätigte diese Interpretation. Diese Arbeit bestätigte, dass der kombinierte Einsatz von ERT- und IP-Methoden für die Überwachung alter Absetzteiche und für die Bewertung ihrer Einkapselung wirksam war.

Resumen

Los residuos mineros acumulados en ciertos lugares del distrito minero abandonado de Linares-La Carolina (España meridional) contienen altos niveles de metales. Por lo tanto, en los últimos años, muchas de estos diques de cola han sido restaurados y sellados. En este estudio, se evaluó la eficacia de dos técnicas geofísicas, la tomografía de resistividad eléctrica (ERT) y la polarización inducida (IP), combinadas con estudios hidroquímicos, como herramientas para visualizar la eficacia del encapsulamiento. En el lecho rocoso, los perfiles de ERT distinguieron una capa superficial de valores de resistividad moderados-bajos (por debajo de 80 Ω.m), asociada con arenas aluviales o granito alterado, y una zona más profunda de alta resistividad (hasta 1000 Ω.m) relacionada con el basamento de granito inalterado. Se identificaron cambios laterales en la resistividad dentro de la capa superior y aguas abajo del dique de colas. Los perfiles IP detectaron anomalías locales en los valores de cargabilidad (hasta 8 mV/V), inusuales en las rocas graníticas. Los lugares con alta cargabilidad también tenían baja resistividad, lo que indica típicamente la percolación de lixiviados mineros en los granitos alterados subyacentes. La integración de la información geológica y geoquímica confirmó esta interpretación. Este trabajo verificó que el uso combinado de los métodos de ERT y PI es eficaz para vigilar las antiguas balsas de colas y para evaluar el encapsulamiento de las mismas.

抽象

在西班牙南部利纳勒斯-拉卡罗莱纳(Linares-La Carolina)废弃矿区,一些场地堆积着金属含量很高的废矿渣。为此,近些年许多尾矿库被修复和封存。研究利用电阻率层析成像(ERT)和激发极化法(IP)两种地球物理技术与水化学分析相结合的方法评价了尾矿库封闭效果。在基岩内,ERT剖面识别出浅层的中-低电阻率(低于80Ω.m)冲积砂或蚀变花岗岩层和深层的高电阻率(达1000Ω.m)未蚀变花岗岩。在尾矿库上层和下游发现电阻率侧向变化。IP剖面检测到花岗岩中少见的极化率局部异常(高达8 mV/V)。高极化率位置同时也具有低电阻率,表明采矿溶滤液在下伏蚀变花岗岩的渗透现象。地质和地球化学综合信息都证实了以上解释。研究证实ERT与IP联合物探技术可有效应用于老尾矿库监测和尾矿封闭效果评价。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aristodemou E, Thomas-Betts A (2000) DC resistivity and induced polarisation investigations at a waste disposal site and its environments. J Appl Geophys 44:275–302

    Google Scholar 

  • Azcárate JE (1977) Mapa geológico y memoria explicativa de la hoja 905 (Linares), escala 1:50.000. Instituto Geológico y Minero de España, Madrid

  • Bery A, Saad R, Tonnizam E, Jinmin M, Azwin IN, Mohd O, Nordiana MM (2012) Electrical resistivity and induced polarization data correlation with conductivity for iron ore exploration. Electron J Geotech Eng 17:3223–3337

    Google Scholar 

  • Binley A, Kemna A (2005) DC resistivity and induced polarization methods. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer-Verlag, Netherlands, pp 129–156

    Google Scholar 

  • Blondel A, Schmutz M, Franceschi M, Tichané F, Carles M (2014) Temporal evolution of the geoelectrical response on a hydrocarbon contaminated site. J Appl Geophys 103:161–171

    Google Scholar 

  • Bundschuh J, Litter MI, Parvez F, Román-Ross G, Nicolli HB, Jean JS, Liu ChW, López D, Armienta MA, Guilherme L, Gomez A, Cornejo L, Cumbal L, Toujaguez R (2012) One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci Total Environ 429:2–35

    Google Scholar 

  • Chopin EIB, Aloway BJ (2007) Trace element partitioning and soil particle characterization around mining and smelting areas at Tharsis, Riotinto and Huelva, SW Spain. Sci Total Environ 373:488–500

    Google Scholar 

  • Cortada U, Martínez J, Rey J, Hidalgo C (2017) Assessment of tailings pond seals using geophysical and hydrochemical techniques. Eng Geol 223:59–70

    Google Scholar 

  • Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys Prospect 52:379–398

    Google Scholar 

  • De la Torre MJ, Hidalgo MC, Rey J, Martínez J (2012) Mineralogical characterization of tailing dams: incidence of abandoned mining works on soil pollution (Linares, Jaén). Geophys Res Abstr 14: EGU2012:13357

    Google Scholar 

  • Deceuster J, Kaufmann O (2012) Improving the delineation of hydrocarbon impacted soils and water through induced polarization (IP) tomographies: a field study at an industrial waste land. J Contam Hydrol 136–137:25–42

    Google Scholar 

  • El Adnani M, Plante B, Benzaazoua M, Hakkou R, Bouzahzah H (2016) Tailings weathering and arsenic mobility at the abandoned Zgounder silver mine, Morocco. Mine Water Environ 35:508–524

    Google Scholar 

  • Fadele SI, Jatau BS, Abaa SI (2018) Geological and induced polarization geophysical investigations of the quartz-vein gold mineralization in some parts of Ayegunle Sheet 226nw, north central Nigeria. J Environ Earth Sci 8:31–41

    Google Scholar 

  • García-Fernández JM, Gallego J (2009) Proyecto de clausura y restauración del depósito de procesos de tratamiento de industrias extractivas abandonado “0905-2-0002”. EGMASA, Consejería Medio Ambiente, Junta de Andalucía, Sevilla (unpublished)

  • Gratton WS, Nkongolo KK, Spiers GA (2000) Heavy metal accumulation in soil and jack pine (Pinus banksiana) needles in Sudbury, Ontario, Canada. Bull Env Contam Toxicol 64:550–557

    Google Scholar 

  • Griffiths DH, Barker RD (1993) Two-dimensional resistivity imaging and modelling in areas of complex geology. J Appl Geophys 29:211–226

    Google Scholar 

  • Gutiérrez-Guzmán J (1999) Las minas de Linares. Apuntes históricos. Colegio Oficial de Ingenieros Técnicos de Minas de Linares, Linares

    Google Scholar 

  • Herbet RB (1997) Partitioning of heavy metals in podzol soils contaminated by mine drainage waters, Dalarna, Sweden. Water Air Soil Poll 96:39–59

    Google Scholar 

  • Hidalgo MC, Benavente J, El Mabrouki K, Rey J (2006) Estudio hidroquímico comparativo en dos sectores con minas abandonadas de sulfuros metálicos: distrito de Linares-La Carolina (Jaén). Geogaceta 39:123–126

    Google Scholar 

  • Hidalgo MC, Rey J, Benavente J, Martínez J (2010) Hydrogeochemistry of abandoned Pb sulphide mines: the mining district of La Carolina (southern Spain). Environ Earth Sci 61:37–46

    Google Scholar 

  • Irawan D, Sumintadireja P, Saepuloh A (2013) Subsurface imaging techniques for deep ore mineral mapping using geoelectrical and induced polarization (IP) methods. Procedia Earth Planet Sci 6:139–144

    Google Scholar 

  • Ji K, Kim J, Lee M, Park S, Kwon HJ, Cheong HK, Jang JY, Kim DS, Yu S, Kim YW, Lee KY, Yang SO, Jhung IJ, Yang WH, Paek H, Ch Hong Y, Choi K (2013) Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environ Poll 178:322–328

    Google Scholar 

  • Li X, Thornton I (2001) Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Appl Geochem 16:1693–1706

    Google Scholar 

  • Lillo J (1992) Geology and Geochemistry of Linares-La Carolina Pb-Ore field (southeastern border of the Hesperian Massif). PhD Thesis, Univ of Leeds, UK

  • Lindsay MBJ, Moncur MC, Basin JG, Jambor JL, Ptacek CJ, Blowes DW (2015) Geochemical and mineralogical aspects of sulfide mine tailings. Appl Geochem 57:157–177

    Google Scholar 

  • Loke MH (2014) Tutorial: 2-D and 3-D electrical imaging surveys, Revision date: 5th Nov 2014. www.geotomosoft.com (ACCESSED 2015-02-19)

  • Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152

    Google Scholar 

  • Loke MH, Dahlin T (2002) A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion. J Appl Geophys 49:149–162

    Google Scholar 

  • Martín-Crespo T, Gómez-Ortíz D, Martín-Velázquez S, Esbrí JM, De Ignacio-San José C, Sánchez-García MJ, Montoya-Montes I, Martín-González F (2015) Abandoned mine tailings in cultural itineraries: Don Quixote Route (Spain). Eng Geol 197:82–93

    Google Scholar 

  • Martínez J, Llamas J, De Miguel E, Rey J, Hidalgo MC (2008) Determination of geochemical background in a metal mining site: example of the mining district of Linares (South Spain). J Geochem Explor 94:19–29

    Google Scholar 

  • Martínez J, Rey J, Hidalgo C, Benavente J (2012) Characterizing abandoned mining dams by geophysical (ERI) and geochemical methods: the Linares-La Carolina District (southern Spain). Water Air Soil Poll 223:2955–2968

    Google Scholar 

  • Martínez J, Hidalgo MC, Rey J, Garrido J, Kohfahld C, Benavente J, Rojas D (2016) A multidisciplinary characterization of a tailings pond in the Linares-La Carolina mining district, Spain. J Geochem Explor 162:62–71

    Google Scholar 

  • Martínez J, Rey J, Sandoval S, Hidalgo C, Mendoza R (2019) Geophysical prospection using ERI and IP techniques to locate vein deposits. Remote Sens Basel. https://doi.org/10.3390/rs11242923

    Article  Google Scholar 

  • Martínez-Pagán P, Faz Cano A, Aracil E, Arocena JM (2009) Electrical resistivity imaging revealed the spatial properties of mine tailing ponds in the Sierra Minera of Southeast Spain. J Environ Eng Geophys 14:63–76

    Google Scholar 

  • Moncur MC, Ptacek CJ, Blowes DW, Jambor JL (2005) Release, transport and attenuation of metals from an old tailings impoundment. Appl Geochem 20:639–659

    Google Scholar 

  • Moreira CA, Rezende Borges M, Lira Vieira G, Malagutti Filho W, Fernándes Montanheiro M (2014) Geological and geophysical data integration for delimitation of mineralized areas in a supergene manganese deposits. Geofísica Int 53:199–210

    Google Scholar 

  • Navarro A, Font X, Viladevall M (2015) Metal mobilization and zinc-rich circumneutral mine drainage from the abandoned mining area of Osor (Girona, NE Spain). Mine Water Environ 34:329–342

    Google Scholar 

  • Nordstrom DK, Blowes DW, Ptacek CJ (2015) Hydrogeochemistry and microbiology of mine drainage: an update. Appl Geochem 57:3–16

    Google Scholar 

  • Power Ch, Tsourlos P, Ramasamy M, Nivorlis A, Mkandawire M (2018) Combined DC resistivity and induced polarization (DC-IP) for mapping the internal composition of a mine waste rock pile in Nova Scotia, Canada. J Appl Geophys 150:40–51

    Google Scholar 

  • Puttiwongrak A, Suteerasak T, Mai PhK, Hashimoto K, Gonzalez JC, Rattanakom R, Prueksakorn K (2019) Application of multi-monitoring methods to investigate the contamination levels and dispersion of Pb and Zn from tin mining in coastal sediments at Saphan Hin, Phuket, Thailand. J Clean Prod 218:108–117

    Google Scholar 

  • Rojas D, Benavente J, Hidalgo MC, Rey J, Martínez J (2012) Contenido total y fraccionamiento de metales y semimetales en las escombreras del distrito minero de Linares-La Carolina (Jaén). Geotemas 11:1495–1498

    Google Scholar 

  • Sasaki Y (1992) Resolution of resistivity tomography inferred from numerical simulation. Geophys Prospect 40:453–464

    Google Scholar 

  • Schwartz N, Furman A (2012) Spectral induced polarization signature of soil contaminated by organic pollutant: experiment and modeling. J Geophys Res 117:B10203

    Google Scholar 

  • Slater LD, Lesmes D (2002) I.P. interpretation in environmental investigations. Geophysics 67:77–88

    Google Scholar 

  • Sobanska S, Ledésert B, Deneele D, Laboudigue A (2000) Alteration in soils of slag particles resulting from lead smelting. CR Acad Sci II 33(1):271–278

    Google Scholar 

  • Sumner JS (1976) Principles of induced polarization for geophysical exploration. Elsevier Scientific Publishing, Amsterdam

    Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Towel JN, Anderson RG, Pelton WH, Olhoeft GR, Labrecque D (1985) Direct detection of hydrocarbon contaminants using induced polarization method. In: SEG meeting, pp 145–147

  • Yun SW, Baveye PhC, Kim KB, Kang DH, Lee SY, Son J, Kim DH, Yoon Y, Yu Ch (2016) Effect of postmining land use on the spatial distribution of metal(loid)s and their transport in agricultural soils: analysis of a case study of Chungyang, South Korea. J Geochem Explor 170:157–166

    Google Scholar 

  • Zarroca M, Linares R, Velásquez-López PC, Roqué C, Rodríguez R (2015) Application of electrical resistivity imaging (ERI) to a tailings dam project for artisanal and small-scale gold mining in Zaruma–Portovelo, Ecuador. J Appl Geophys 113:103–113

    Google Scholar 

  • Zhadanov MS (2018) Direct current and induced polarization methods. In: Ch 12 in Foundations of Geophysical Electromagnetic, Theory and Methods, 2nd edit, Elsevier, pp 439–493

Download references

Acknowledgements

The authors thank CEACTEMA (University of Jaén) for partially financing this work. Careful reviews by anonymous referees, by the Editor-in-Chief (Dr. Kleinmann) and by the Guest Editor (Prof. Fernández-Rubio) substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rey, J., Martínez, J., Hidalgo, M.C. et al. Assessment of Tailings Ponds by a Combination of Electrical (ERT and IP) and Hydrochemical Techniques (Linares, Southern Spain). Mine Water Environ 40, 298–307 (2021). https://doi.org/10.1007/s10230-020-00709-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-020-00709-3

Keywords

Navigation